SECOND INVESTIGATION REPORT FOR LIGHT NON-AQUEOUS PHASE LIQUID (LNAPL) CHARACTERIZATION

DEFENSE FUEL SUPPORT POINT NORWALK 15306 NORWALK BOULEVARD NORWALK, CALIFORNIA

Prepared for

Defense Logistics Agency Energy 8725 John J. Kingman Road Fort Belvoir, Virginia 22060-6222

January 12, 2012

Prepared by

100 WEST WALNUT STREET • PASADENA • CALIFORNIA 91124

SECOND INVESTIGATION REPORT FOR LIGHT NON-AQUEOUS PHASE LIQUID (LNAPL) CHARACTERIZATION

DEFENSE FUEL SUPPORT POINT NORWALK 15306 NORWALK BOULEVARD NORWALK, CALIFORNIA

Prepared for

Defense Logistics Agency Energy 8725 John J. Kingman Road Fort Belvoir, Virginia 22060-6222

January 12, 2012

Prepared by

PARSONS 100 WEST WALNUT STREET PASADENA • CALIFORNIA 91124

Reviewed by:

Quin Kinnebrew, P.G. Senior Hydrogeologist

Reviewed by:

SCO. Seven Serve

Redwan Hassan, P.G. Project Manager

TABLE OF CONTENTS

ABE	BREVIA	TIONS AI	ND ACRONYMS	V
1	INTF	RODUCTI	ON	1-1
	1.1	Site Des	scription	1-1
	1.2	Geology	y & Hydrogeology	
	1.3	Objectiv	ves	
2	FIEL	D ACTIV	ITIES	
	2.1	Project 1	Planning and Preparation	
		2.1.1	Permitting	
		2.1.2	Geophysical Clearance	
	2.2	Hollow-	Stem Auger Drilling and Soil Sampling	
		2.2.1	Locations and Depths	
		2.2.2	Boring Backfill	
		2.2.3	Soil Sampling	
		2.2.4	Analytical Methods	
	2.3	LNAPL	Bail-down and Recovery Test	
	2.4	Field Va	ariations from Work Plan	
	2.5	Equipm	ent Decontamination	
	2.6	Investig	ation-Derived Waste Disposal	
3	INVI	ESTIGATI	ON RESULTS AND DATA EVALUATION	
	3.1	Occurre	nce of Petroleum Hydrocarbons	
		3.1.1	Soil Analytical Results	
		3.1.2	Distribution of Hydrocarbons	
	3.2	Forensic	c Results and LNAPL Waveform Interpretation	
	3.3	LNAPL	Mobility Study	
4	SUM	MARY A	ND RECOMMENDATIONS	
	4.1	Summar	ry	
	4.2	Recomm	nendations	

TABLES

- 3-1 Hydrocarbon Fraction in Soil Analytical Results
- 3-2 Detected Volatile Organic Compounds in Soil Analytical Results
- 3-3 GMW-62 Product Baildown Test

FIGURES

- 1-1 Site Location Map
- 1-2 UVOST Location Map
- 3-1 3-D CSM of LNAPL distribution
- 3-2 Distribution of LNAPLS in Vadose Zone by UVOST
- 3-3 Distribution of LNAPLS near the Water Table by UVOST
- 3-4 GMW-62 Product Recovery Test Hydrograph

APPENDICES

- A. CPT and UVOST Data Logs for UV-2 and UV-9
- B. Boring Logs for UVB-2 and UVB-9
- C. Laboratory Analytical Results

ABBREVIATIONS AND ACRONYMS

bgs BTEX Calscience CoreLab CPT CSM DFSP	below ground surface benzene, toluene, ethylbenzene, xylenes Calscience Environmental Laboratories, Inc. Core Laboratories Cone Penetration Test conceptual site model Defense Fuel Support Point
DigAlert DLA	Underground Service Alert Defense Logistics Agency
GC IDW JP KMEP	gas choromatograph investigation-derived waste jet propellant Kinder Morgan Energy Partners, L.P.
LIF	laser induced fluorescence
LNAPL	light non-aqueous phase liquid
mg/kg	milligrams per kilograms
ml/min	milliliters per minute
MS	mass spectrometer
MTBE	methyl tert-butyl ether
PPE	personal protective equipment
RWQCB	Regional Water Quality Control Board, Los Angeles Region
SFPP	Santa Fe Pacific Pipeline, L.P.
site	DFSP Norwalk Facility
SubSurface	SubSurface Surveys & Associates, Inc.
TBA	tert-butyl alcohol
TFS	truck fill stations
TIC	total ion chromatograms
TPH	total petroleum hydrocarbons
USEPA	United States Environmental Protection Agency
UVOST	ultra-violet optical screening tool
VOCs	volatile organic compounds
ZymaX	ZymaX Forensics

1 INTRODUCTION

This report presents the results of further investigation conducted at the Defense Fuel Support Point (DFSP) Norwalk facility (site) located at 15306 Norwalk Boulevard, Norwalk, California. This work has been conducted at the request of the Regional Water Quality Control Board, Los Angeles Region (RWQCB) in their letter dated May 10, 2011¹ where comments were provided on the *Investigation Report for Light Non-Aqueous Phase Liquid (LNAPL) Characterization and Vapor Monitoring Program*, **Defense Fuel Support Point Norwalk, California**² dated January 14, 2011. This report addresses the RWQCB comments provided in the May 10 and August 10³, 2011 letters and provides details on additional data collection and evaluation. This report has been prepared on behalf of the Defense Logistics Agency (DLA) Energy. The site location map is shown on Figure 1-1. This second investigation report provides supplemental data to the January 14th report and not all information is repeated herein. Please refer to the January 14th report for detailed site and investigation information collected in 2010.

This report only discusses the LNAPL portion of the work and does not address the vapor monitoring program. The *First Semiannual 2011 Soil Vapor Monitoring Report* was submitted in August⁴ and the second semiannual report will be submitted in the first quarter of 2012.

1.1 Site Description

The DFSP Norwalk facility is a 50-acre facility consisting of 12 aboveground storage tanks that previously stored and distributed jet propellant (JP)-5 and JP-8. Aviation gasoline and JP-4 also were reportedly stored at the facility. Santa Fe Pacific Pipeline, L.P. (SFPP), an operating partner of Kinder Morgan Energy Partners, L.P. (KMEP), leases a 2-acre easement along the southern and eastern boundaries of DFSP for operation of its pipelines, which convey gasoline, diesel, and jet fuel. Within the southern easement lie three active pipelines, one of which is a 16-inch diameter pipeline, designated LS-1, that bends at the southeastern corner of the facility and continues northward within the eastern easement. An abandoned pipeline, likely owned or formerly operated by Golden West Pipeline, also runs along the eastern boundary of the site. The DLA has decommissioned the site, but SFPP pipelines continue to operate. Refer to previous reports for additional detailed background site information, which is not repeated here.

Regional Water Quality Control Board (RWQCB), 2011a, Comments on Investigation Report for Light Non-Aqueous Phase Liquid Characterization and Vapor Monitoring Program; letter dated May 10.

² Parsons, 2011a, *Investigation Report LNAPL Characterization and Vapor Monitoring Program*, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California; January 14.

³ RWQCB, 2011b, Approval of WorkPlans for Light Non-Aqueous Phase Liquid (LNAPL) Characterization and Vapor Monitoring Program; letter dated August 10.

⁴ Parsons, 2011b, *First Semiannual 2011 Soil Vapor Monitoring Report*, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California; August 29.

1.2 Geology & Hydrogeology

Cone penetrometer tests (CPT) in conjunction with a ultraviolet optical scanning tool (UVOST) were performed for the first phase of this investigation at 15 locations around the site to provide basic interpretations in terms of soil behavior type and various geotechnical parameters using current published empirical correlations⁵. Soil encountered during the investigation was comprised primarily of unconsolidated fine sand, silty fine sand, and silt, with lesser concentrations of clay. The depth of investigation was approximately 80 feet below ground surface (bgs) at each location. Figure 1-2 shows the locations of the UVOST/CPTs. The January 2011 investigation report presented geologic cross-sections that were prepared using the CPT and UVOST data.

The cross sections show that the unconsolidated alluvial sediments at the surface are approximately 50 feet thick and consist mostly of fine sand and silty fine sand with lesser amounts of interbedded silt and clay. A widely continuous sand unit that is approximately 15 to 18 feet thick occurs at the base of the alluvial section. With the water table generally about 30 feet bgs in the site area, this lower sand unit comprises most of the semi-perched aquifer.

Underlying the basal sand of the alluvial section is a finer grained unit comprised mostly of silt and clay, with several interbedded fine sandy layers. This unit, termed the Bellflower Aquitard, is approximately 30 feet thick and generally occurs at a depth of 50 to 80 feet bgs. The interpretations indicate that the Bellflower Aquitard is slightly thinner on the east side of the site and dips below the 80 foot depth of investigation to the west. Although there are several fairly continuous thin sand layers within the Bellflower, the predominance of silty and clayey layers most likely retards vertical migration of contaminants through the Aquitard. Previous investigations of this unit noted it to be organic rich, often containing wood fragments.

The Exposition aquifer is the shallowest reported regional aquifer beneath the site⁶. The sand unit at the top of this aquifer, which is reported to be about 70 feet thick in this area, is interpreted to occur at a depth of 72 feet bgs at drilling location UV-12. Additional information on subsurface conditions encountered below the depth of this investigation (80 feet) for the DFSP property is available in previous reports on the DFSP site, and indicate that the Exposition aquifer is comprised primarily of fine sand and silty fine sand.

⁵ Lunne, T., Robertson, P.K., and Powell, J.J.M, 1997. Cone Penetration Testing in geotechnical Practice, E&FN Routledge, 352 p, ISBN 0-7514-0393-8.

⁶ California Department of Water Resources (CDWR), 1961. Bulletin No. 104 – Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County (Ground Water Geology), dated June 1961 (reprinted May 1991).

1.3 Objectives

The objectives of the initial LNAPL investigation were as follows:

- Assess whether petroleum hydrocarbons were present in soil and groundwater at specific onsite areas where existing data is insufficient to determine its presence or its lateral/vertical extent; and
- Confirm the presence and character of the Bellflower Aquitard.

The 2010 investigation included the following tasks: CPT at 15 locations; UVOST at 15 locations; soil sampling from 4 CPT locations to confirm UVOST results; and 1 split soil sample for geotechnical parameters. Figure 1-2 shows the UVOST locations (the UVOST data were collected at the same CPT borehole locations) throughout the site. Details for the CPT/UVOST location rationale were provided in the January 2011 investigation report.

Additional objectives for this investigation reported herein were as follows:

- Confirm UVOST responses from the deeper zone at two UVOST locations;
- Provide LNAPL waveform interpretations and LNAPL forensic results; and
- Conduct LNAPL mobility study.

To assess the first objective, hollow-stem auger drilling was used to assess the deep soil conditions at UV-2 and UV-9, where the UVOST logs exhibited a low magnitude reflectance response. The CPT and UVOST logs for UV-2 and UV-9 are included as Appendix A of this report.

Discussion for the second objective is discussed below in Section 3.2.

The third objective was addressed by following the example procedures summarizing the methodologies for the evaluation of LNAPL transmissivity provided by the RWQCB in an email to Parsons on May 12, 2011. A LNAPL product baildown test was conducted at GMW-62, the only well that contains measurable product thickness sufficient to perform test.

2 FIELD ACTIVITIES

The investigations were conducted in accordance with a work plan⁷ and two addendum work plans^{8,9} for the site. Approval of the work plan and addendums were received from the RWQCB^{10,11}. This effort is comprised of deep soil sampling at two hollow-stem auger drilling locations located adjacent to former UVOST locations UV-2 (north of truck fueling stations and south of water tank) and UV-9 (south of former AST 80004), and a LNAPL product baildown test at GMW-62. The field work was conducted in December 2011.

2.1 **Project Planning and Preparation**

Preparation for fieldwork included acquisition of field equipment and permits, mobilization, and coordinating lines of communication. Parsons procured a geophysical survey subcontractor to clear the planned soil sampling locations.

2.1.1 Permitting

Prior to the start of subsurface activities, soil boring permits to drill with the hollow-stem auger tools into saturated soils beneath the site were obtained prior to this investigation from the Los Angeles County Department of Public Work and City of Norwalk.

2.1.2 Geophysical Clearance

Underground Service Alert (DigAlert) was notified of Parsons planned subsurface activities at least 48 hours prior to the start of the field investigation. The proposed drilling locations were clearly marked with white paint. DigAlert contacted all utility owners within the site vicinity and notified them of the subsurface investigation plans.

In addition to notifying DigAlert, each drilling location and surrounding areas were surveyed using a combination of electromagnetic induction and ground-penetrating radar instruments to investigate and clear all boring locations for any subsurface obstructions (e.g., piping, utilities, metallic debris, etc.). SubSurface Surveys & Associates, Inc.

 ⁷ Parsons, 2010a, LNAPL Characterization via Ultra-Violet Optical Screening Tool Technology and Vapor Monitoring Program, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California, dated September 14.

 ⁸ Parsons, 2010b, Addendum to the LNAPL Characterization via Ultra-Violet Optical Screening Tool Technology and Vapor Monitoring Program Work Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California, dated October 12.

Parsons, 2011c, Second Addendum Work Plan for the Light Non-Aqueous Phase Liquid (LNAPL) Characterization and Vapor Monitoring Program, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California, dated June 30.

¹⁰ RWQCB, 2010, Workplan Approval for Light Non-Aqueous Phase Liquid (LNAPL) Characterization via Ultra-Violet Optical Screening Tool Technology and Vapor Monitoring Program, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California (SCP NO. 0286A, Site No. 16638), letter dated October 26.

^{11 &}lt;sub>RWQCB</sub>, 2011b.

conducted the geophysical survey immediately prior to the start of the field investigation. They clearly delineated all underground utility lines detected in proximity to the sampling locations.

2.2 Hollow-Stem Auger Drilling and Soil Sampling

Hollow-stem auger drilling and soil sampling was conducted on December 8, 2011. J. & H. Drilling Co., Inc. of Santa Ana, California provided the drilling rig equipped with the sampling tools. The soil drilling and sampling was overseen by a California-licensed Professional Geologist.

2.2.1 Locations and Depths

Two locations (UVB-2 and UVB-9) within the DFSP Norwalk facility shown on Figure 1-2, were cored with the hollow-stem auger drilling system. Borehole UVB-2 was drilled to a depth of 76.5 feet and UVB-9 was drilled to a depth of 73.5 feet. Lithologic logs of these boreholes are provided in Appendix B. This relatively deep sampling was conducted in order to assess the chemistry of contaminants present at the UVOST reflectance zones.

2.2.2 Boring Backfill

Each open boring was backfilled with a cement-bentonite slurry (a 95%:5% ratio). The slurry was pumped through a tremie pipe that extended to the bottom of the open boring. The tremie pipe was pulled up incrementally following successive injections of slurry. The slurry was monitored for settlement at the surface. Additional slurry was poured into the boring to compensate for any settlement.

2.2.3 Soil Sampling

As noted above, soil samples were collected from UVB-2 and UVB-9. The UVOST data from the primary borehole locations at UV-2 and UV-9 indicated the presence of petroleum hydrocarbon LNAPLS at depths of about 30 and 76 feet at UV-2 and about 61 and 73 feet at UV-9. The soil samples for laboratory analysis were collected from the depths with the highest measured UVOST petroleum hydrocarbon reflectance at each location, and were fine-tune selected near these depths based on odor, staining and PID screening of the recovered cores from the two new boreholes.

A hollow-stem auger rig was used to collect the soil samples. The sampling device was comprised of a stainless steel drive sampler lined with three stainless steel tubes (2-inch diameter by 6-inch length). Immediately following the collection of soil, the lower tube was capped at each end with Teflon tape and plastic caps (following preparation of discreet sample aliquots utilizing EPA Method 5035 techniques). The capped sample was labeled, placed in a sealable plastic bag, and then immediately placed into an ice-cooled chest. The soil within the remaining upper two tube was used for lithologic classification.

The collected soil samples were reviewed for classification by a California-licensed professional geologist. The soil descriptions included soil type, texture (grain size; using the Unified Soil Classification System), color (Munsell soil color system), general moisture content, and evidence of contamination.

2.2.4 Analytical Methods

Calscience Environmental Laboratories, Inc. (Calscience) analyzed the soil samples collected during this investigation. Calscience is certified by the California Department of Health Services Environmental Accreditation Laboratory Program. In addition, the soil physical parameters were analyzed by Core Laboratories (CoreLab) and the LNAPL samples were analyzed by ZymaX Forensics (ZymaX). Each collected soil sample was analyzed for the following compounds:

- Total petroleum hydrocarbons (TPH) as gasoline using USEPA Method 8015B (modified);
- TPH as JP-5 using USEPA Method 8015B (modified);
- TPH as diesel using USEPA Method 8015B (modified); and
- Volatile organic compounds (VOCs), including oxygenates using USEPA Method 8260B (via 5035).

Specific samples were also analyzed for the following compounds:

- Moisture content using USEPA Method API RP 40/ASTM D2216;
- Dry bulk density, grain density, porosity, and pore fluid saturation using USEPA Method API RP 40;
- Sieve and laser particle size analysis and summary; and
- LNAPL forensic evaluation.

Analytical data summary tables for soil are provided in Tables 3-1 and 3-2. Copies of the final soil laboratory reports are provided in Appendix C.

2.3 LNAPL Bail-down and Recovery Test

Monitoring well GMW-62 was selected for a LNAPL bail-down test because it had the thickest measured LNAPL column of all the wells at the site at 0.92 feet. A pneumatic skimmer pump was used to remove the free product to a sheen. The well was pumped until mostly water was seen at the discharge point. The depth to product and water was measured on the recovery time schedule specified in the work plan.

2.4 Field Variations from Work Plan

All field activities were conducted in general conformance with Parsons' sampling work plan¹² and work plan addendums^{13,14}. The sampling locations were consistent with those proposed.

2.5 Equipment Decontamination

All soil sampling equipment that came into contact with potentially contaminated soil or water was carefully decontaminated to assure the quality of samples collected and prevent transference of impacted materials from the area sampled. Decontamination was conducted prior to and after each use of equipment. All sampling devices used were decontaminated according to USEPA Region IX recommended procedures.

The drilling and sampling equipment used were decontaminated using the following procedures:

- Non-phosphate detergent and tap water wash,
- Initial tap water rinse, and
- Final distilled water rinse.

The wash water and rinse water generated during the field investigation were placed into 55-gallon drums. These drums were stored within the southwestern portion of the DFSP facility (near the office area).

2.6 Investigation-Derived Waste Disposal

Different types of investigation-derived waste (IDW) were generated during the field activities, included the following:

- Used personal protective equipment (PPE),
- Disposable sampling equipment,
- Decontamination fluids, and
- Soil cuttings.

IDW was managed and disposed of in accordance with current Federal, State, and local requirements. IDW was labeled and stored in accordance with the requirements of the Los Angeles County Health Department.

Soil cuttings and decontamination water generated during field investigations were collected in properly labeled and sealed U.S. DOT approved 55-gallon drums. At the end

¹² Parsons, 2010a.

¹³ Parsons, 2010b.

¹⁴ Parsons, 2011c.

of the field program, the drums were moved to the southwestern portion of the DESC facility. Profiling of soil cuttings and waste water was done to ensure appropriate disposal. Proper arrangements were made to haul and dispose of the IDW drums.

Used PPE and disposable equipment was double bagged and placed in a municipal refuse dumpster at the site. These wastes are not considered hazardous and were sent to a municipal landfill.

3 INVESTIGATION RESULTS AND DATA EVALUATION

This section discusses the results from the LNAPL and soil investigations and data evaluation summaries.

3.1 Occurrence of Petroleum Hydrocarbons

In the October 2010 field work, the vertical distribution of petroleum hydrocarbons was investigated using UVOST technology and was reported in the January 2011 report. Different types of PAHs will fluoresce at different wave lengths leaving different characteristic signatures. Measuring the intensity and wavelength of the fluoresced PAH allows one to assess the type and relative concentration of the PAH present in the subsurface. In general, as the number of aromatic (benzene) rings increases, the fluorescent response shifts toward longer wavelengths. Therefore, lighter compounds tend to fluoresce at shorter wavelengths and heavier compounds fluoresce at longer wavelengths. The intensity of the radiation emitted by the contaminant is an indication of the relative concentration of aromatic rings in the compounds present.

3.1.1 Soil Analytical Results

The January 2011 report presented the UVOST and soil analytical results per UVOST location (UV-1 through UV-15). Below presents the deep soil results from this field effort at adjacent borings to UV-2 and UV-9.

UVB-2 Location UV-2 is situated immediately north of the truck fill stations (TFS) and just west of MW-15. Free product has been measured at MW-15 since 2002. The UVOST log indicates a large amplitude spike at 29.8 to 30.4 feet bgs, which is about 2 feet below the current potentiometric surface. Several smaller magnitude increases in fluorescence occur at 11-12 feet bgs and 18-19 feet bgs. The CPT log indicates that these depths are clayey silt or silty clay layers immediately above and below a sandy unit. These may be indicative of irreducible concentrations of hydrocarbons or may be natural organic rich layers. The "callout" graph on the UVOST log indicates higher voltages in the longer wavelengths, and therefore has a different hydrocarbon character than shown at UV-1. The UV-2 waveform character is more similar to motor oil or gasoline. This may indicate a different source at the UV-2 location than at UV-1. There are no PAHs indicated on the UVOST log in the Bellflower Aquitard below the alluvial basal sand unit.

A soil sample was collected at location UV-2 at a depth of 30 feet bgs, in the exact interval of the highest UV reflectance spike. The laboratory analytical results, summarized on Table 4-1 and Appendix C of the original January 2011 report, show a concentration of 370 milligrams per kilogram (mg/kg) TPH as gasoline range and 510 mg/kg TPH as JP-5. Considering that there is considerable overlap in the aliphatic carbon chain length of these two analyses (TPH as gasoline has a carbon range of C4 – C14 and TPH as JP-5 has a

carbon range of C8 - C17), it is reasonable to conclude that the soil in this smear zone is below the cleanup standard of 1,000 mg/kg. In addition to the TPH analyses, the soil sample was also analyzed for VOCs. Table 4-2 of the January 2011 report summarizes all of detected VOCs from the UV-2 borehole, and shows that many aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents, were detected and contributed to the UV reflectance spike. No oxygenates (methyl tert-butyl ether [MTBE], tert-butyl alcohol [TBA], and others) were detected.

New borehole UVB-2, drilled adjacent to UV-2, was cored and sampled at six separate depths as indicated on Table 3-1. These depths were all selected based on even the slightest increase in UV reflectance at the offset UV-2 UVOST log. The sample collected at 11 to 11.5 feet had the highest detected TPH concentrations (Table 3-1), but all were an order of magnitude lower than the 1,000 mg/kg clean up standard. Some VOCs were detected in all sampled depths at low, estimated concentrations as indicated on Table 3-2.

Of particular interest is the sample from 71.5 to 72 feet, which had benzene detected at 140 mg/kg and toluene at 130 mg/kg. This is not at a depth that indicated any UV reflectance on the adjacent UVOST log, indicating that the benzene and toluene are from dissolved phase adsorbed to the clay matrix and are not present as LNAPLs. That core sample from this depth had no odor, stain, or PID reading above background.

The core sample from UVB-2 at 76 feet, where there was a slight UV reflectance at UV-2, had no odor or stain; and had no TPHs or VOCs detected above the reporting limit. The lithologic description for the clay at a depth of 71.5 to 72 feet was described as organic rich.

The lithologic description from this depth is silt that has some very fine grained sand mixed in, just as was interpreted from the CPT log at UV-2. The lithologic classification of the sample from 76 feet is also confirmed by the CoreLab sieve analysis included in Appendix C. A pore fluid saturation test indicated a hydrocarbon saturation of 2.25 % of the pore volume. This result is explained in Section 3.2 with the forensic analysis.

UVB-9 Borehole UV-9 is located approximately 45 feet south of Tank 80004, between GMW-45 and TF-23. Free product was reported in TF-23 in October 2009 with a thickness of 0.01 foot, but was not observed prior to this occurrence or subsequently in 2010 or 2011. The UVOST log indicates that there are no residual concentrations of TPH in the soil column at this location that may be contributing to the dissolved phase plume.

The highest magnitude UV reflectance at UV-9 was at a depth of 72 feet. However, that was attributed to organic material in the silty unit or mineral fluorescence. To verify this interpretation, borehole UVB-9 was drilled adjacent to UV-9. A core sample from UVB-9, collected at a depth of 71.5 to 72 feet, had no detectable TPHs (Table 3-1), and no VOCs (Table 3-2) detected above the reporting limit. The core sample from 28 feet deep, approximately at the water table, had some low concentrations of TPHs and VOCs (Tables 3-1 and 3-2), but all were well below the clean-up standard of 1,000 mg/kg.

The core sample from UVB-9 at 72 feet, which had no odor or stain, was also sent to CoreLab to analyze physical properties. The lithologic description for the clay at a depth of 67 feet was described as organic rich. The sieve analysis indicates a silt with trace amounts of fine and very fine sand, just as interpreted for this depth on the UV-9 CPT log (Appendix A).

A pore fluid saturation test indicated a hydrocarbon saturation of 3.48 % of the pore volume. This result is explained in Section 3.2 with the forensic analysis.

3.1.2 Distribution of Hydrocarbons

The following interpretations are based on the observations presented above and from the January 2011 report. A review of the cross sections (January 2011 report, Figures 1-3 through 1.9) show that residual LNAPLs occur both above the water table (vadose zone) and below the water table (saturated zone). Residual LNAPLs in the saturated zone more readily contribute to the dissolved phase contaminant plumes, which are described in more detail in the semiannual reports.

Figure 3-1 shows a conceptual site model (CSM) that integrates all of the CPT and UVOST data. The vertical and lateral extents of the contamination shown on the CSM are based on the UVOST reflectance, and since the UVOST tool detects only nonaqueous phase aromatic hydrocarbons - the plume extents shown do not depict the extent of the dissolved phase plumes. Although the UVOST tool measures UV reflectance every 0.1 foot, the data for modeling was reduced to the maximum reflectance value for each foot. This has the effect of exaggerating the thickness and magnitude of contamination shown on the CSM and also on the cross sections shown on Figures 1-3 through 1-9 in the January 2011 report. Based on the magnitude of the UV reflectance on the UVOST logs, the thickness of the LNAPL zones, and the soil analytical results, the plumes shown on the CSM are most likely at residual levels and are no longer migrating. However, these residual hydrocarbons do continue to be a source for the dissolved phase plumes. The CSM shows that the residual LNAPLs are confined to a few thin layers and are not distributed throughout the entire vadose (unsaturated) zone and do not occur below the historical fluctuations in the water table.

Figure 3-2 shows a plan view of the lateral extents of hydrocarbons in the vadose zone. The limits shown were determined by statistical krieging of the UV reflectance data and were not influenced by geological interpretation. The occurrence of LNAPLs is limited to the area around and south of the TFS as indicated at locations UV-3 and UV-4. The UV waveform for the hydrocarbons in this area and interval is more like a motor oil or gasoline than jet fuel. A small area of LNAPLs above the water table is also indicated at UV-10 at very low concentration. As mentioned above, the waveform type at this location is indicative of jet fuel.

Figure 3-3 shows a plan view of the lateral extents of hydrocarbons at or below the water table. Several areas are indicated to have residual levels of LNAPLs. The area extending from the TFS (UV-2) northward toward Tank 55003 (UV-1) is interpreted to be motor oil at UV-2 and low concentration of jet fuel at UV-1. Another area with LNAPLs at or below the water table occurs southwest of Tank 80008 (UV-10) and extends westward toward Tank 80007 (UV-14). The UV waveform type indicates a jet fuel source, which is confirmed by the laboratory analysis for UV-10 (3,300 mg/kg as TPH as JP-5). The concentration of TPH as JP-5 appears to be lower at UV-10 than at UV-14 based on the magnitude of the UV reflectance at the two wells, but both locations appear to be at irreducible residual concentrations that are no longer mobile.

Figure 3-3 shows a small area of LNAPLs at the east side of the site adjacent to Holifield Park centered around UV-12. As noted above for location UV-12, this plume is identified as jet fuel source based on UV waveform and laboratory analysis of a soil sample. The aerial extent of this plume is limited to the immediate area around GW-15, UV-12, and GMW-62.

A fourth area with LNAPLs near the water table is at UV-5. Although this plume is depicted on Figure 3-3 as comingled with the plume at UV-1 and UV-2, it may also be interpreted as a separate plume based on the different UV waveform character, and different reflectance magnitudes at different stratigraphic levels. The LNAPLs at the UV-5 plume are in a thin layer and most likely at irreducible residual levels that are no longer mobile, but will continue to be a source for the dissolved phase plume.

3.2 Forensic Results and LNAPL Waveform Interpretation

Two soils samples were submitted to ZymaX for forensic analysis of any contained hydrocarbons. A soil sample from a depth of 72 feet was collected from UVB-2, and a sample from 72 feet was collected from UVB-9. Methylene chloride was used as a solvent to extract any hydrocarbons, The concentrated extract was directly injected into a gas choromatograph (GC) with a mass spectrometer (MS) analyzer. Hydrocarbons in the range of C8 to C40 were identified. The total ion chromatograms (TIC) provide the distributions of fingerprints of hydrocarbons and other organic chemicals. The major detected constituents are non-hydrocarbons, several light halocarbons, a phenol, and other oxygen-containing compounds.

The chromatogram for UVB-2-72 indicated a suite of hydrocarbons from C13 to above C29. The n-alkane (Ion 85) chromatogram of this sample shows a strong preference for the odd-numbered alkanes from C25 to C32. This is a characteristic of hydrocarbons from recent organic matter, rather than petroleum hydrocarbons. The remaining suite of hydrocarbons contains abundant hydrocarbons heavier than C17, which are beyond the carbon range of jet fuel (C9 to C16). There is no evidence in the TIC chromatograms of hydrocarbons associated with gasoline. Depending on the quantitation method, it is possible that the light halocarbons and oxygen-containing compounds in this sample would be included in a TPH as gasoline concentration.

The chromatogram for sample UVB-9-72 also shows that the major constituents are nonhydrocarbons with several light halocarbons and oxygen-containing compounds. A suite of hydrocarbons primarily from C17 to above C19 was also detected. These hydrocarbons are beyond the carbon range of jet fuel. There is no evidence in the TIC chromatogram of hydrocarbons associated with gasoline.

The conclusion is that the forensic analysis indicates that the low magnitude UV reflectance indicated on the UVOST logs and also detected as LNAPL saturation on the CoreLab pore fluid saturation tests for depths below 60 feet are most likely due to decay of natural organic material deposited with the fine grained sediments.

The waveform character shown in the call-outs on the UVOST logs for these deeper depths shows very little reflectance on the short wavelength frequency (lighter compounds), and much higher reflectance response in the longer wavelength channels (more carbon rings). These waveform characters correlate very well with the forensic spectral analysis.

3.3 LNAPL Mobility Study

A product baildown test was performed in an effort to determine the transmissivity of the LNAPL at the water table. Monitoring well GMW-62 was selected because it had the thickest measured LNAPL column of all the wells at the site at 0.92 feet. A pneumatic skimmer pump was used to remove the free product to a sheen. The initial pump rate was about 700 milliliters per minute (ml/min), but was reduced to 166 ml/min by the end of the test. The well was pumped until mostly water was observed at the discharge point. Just over 1 gallon of product and 3 gallons of water were removed in one hour. The depth to product and water was measured on the recovery time schedule specified in the work plan.

Table 3-3 shows the recovery measurements of depth to product and depth to water, and the calculated product thickness for each measurement. Figure 3-4 shows hydrographs and product thickness curves for all of the data and a blow-up of the measurements for the first day only. Figure 3-4 shows that the water level rose as the product was removed, and rebounded much faster to a level higher than the initial product level. The product thickness immediately recovered 0.02 feet (0.24-inches) and remained that thickness for the first hour. Over the next five days, the product thickness increased to a maximum thickness of 0.04 feet before decreasing to a thickness of 0.01 feet.

The combination of water level changes, minimal recovery, and data variability make calculation of LNAPL transmissivity dubious. The CPT and UVOST logs for UV-12, which is located near GMW-62, indicate that less than one foot of soil with some LNAPL saturation occurs in a clay or silty clay unit. Typically, hydraulic conductivity in this type of lithology is in the range of 10^{-6} to 10^{-8} cm/sec. It is reasonable to assume that LNAPL conductivity would be even less due to differences in density, viscosity, and being the non-wetting liquid. We assume that with a LNAPL saturated thickness of less than a foot, the LNAPL transmissivity would be very low. The current data set and site

conditions do not allow adequate data to calculate the LNAPL transmissivity using the proposed/suggested calculations that the RWQCB provided.

4 SUMMARY AND RECOMMENDATIONS

The objectives of this investigation were as follows:

- Assess whether petroleum hydrocarbons are present in soil and groundwater at specific on-site areas where existing data is insufficient to determine its presence or its lateral/vertical extent;
- Confirm the presence of the Bellflower Aquitard; and
- Confirm UVOST responses from the deeper zone at two UVOST locations;
- Provide LNAPL waveform interpretations and LNAPL forensic results; and
- Conduct LNAPL mobility study.

4.1 Summary

The objectives of the investigation as outlined above were met by:

- Conducting CPT at 15 locations;
- Conducting UVOST at 15 locations;
- Collecting soil samples from 4 CPT locations to confirm UVOST results;
- Collecting 1 split soil sample for geotechnical parameters;
- Drilling and coring at two locations with deep UVOST indications;
- Sending deep cores to ZymaX for forensic analysis of hydrocarbons; and
- Performing a LNAPL baildown and recovery test at GMW-62.

Based on the CPT, UVOST, and soil analytical results, hydrocarbon LNAPLs were detected at low concentrations in several areas. Where detected, the vertical extent is limited to a 1 to 2 feet thick smear zone at depths near the perched water table, as shown in the CSM depicted on Figure 3-1. Hydrocarbons, tentatively suspected at deeper depths in the saturated zone were not substantiated. The detected hydrocarbons are interpreted to be at less than residual saturation and are therefore no longer mobile, based on the low concentrations and lack of LNAPL displacement head. As shown on Figure 3-3, the horizontal extent of hydrocarbons in soil is limited to three specific areas on the southern portions of the site and one area on the eastern edge of the site. The hydrocarbon plume near the TFS is interpreted to have a motor oil or diesel source, and the southwestern plume is interpreted to be a gasoline type. The plume near Tank 80007 and the eastern plume probably had a jet fuel source. The statistically contoured plume extents shown on

Figure 3-3 are larger than would be manually interpreted, and show a conservative maximum areal distribution.

The CPT data confirmed the presence of the Bellflower Aquitard everywhere across the site generally at a depth of 50 feet bgs. The thickness varies from greater than 36 feet on the west side of the site (UV-6) and thins to 25 feet on the east side (UV-12). The Bellflower Aquitard is comprised mostly of silt and clay, with several interbedded fine sandy layers. Although there are several fairly continuous thin sand layers within the Bellflower, the predominance of silty and clayey layers most likely retards vertical migration of contaminants through the Aquitard.

4.2 Recommendations

The UVOST data indicates that there are occurrences of residual hydrocarbons in the soil column near the water table that are at irreducible concentrations. Therefore, it would not be productive to install an active extraction system to remove free product, as was verified by the GMW-62 baildown test. It is recommended to utilize passive recovery with absorbent socks to remove the low volume of hydrocarbons that may accumulate in any well. This conclusion does not apply to the current extraction systems that are utilized to manage the dissolved phase plume and influence hydraulic gradients.

TABLES

TABLE 3-1Hydrocarbon Fraction In Soil Analytical ResultsDefense Fuel Support PointNorwalk, California

		TPH as	TPH as	TPH as
		Gasoline	JP5	Diesel
		(C4-C14)	(C8-C17)	(C6-C44)
	Units	mg/kg	mg/kg	mg/kg
Sample Location				
and Depth	Sample Date			
UVB-2:				
11	12/8/2011	200	460	510
30	12/8/2011	0.38	<5.0	<5.0
43	12/8/2011	< 0.22	<5.0	<5.0
65	12/8/2011	< 0.21	<5.0	<5.0
72	12/8/2011	0.34	<5.0	<5.0
76	12/8/2011	< 0.19	<5.0	<5.0
UVB-9:				
24	12/8/2011	0.76	<5.0	<5.0
28	12/8/2011	150	7.0	7.3
61	12/8/2011	< 0.19	<5.0	<5.0
61 duplicate	12/8/2011	< 0.20	<5.0	<5.0
68	12/8/2011	< 0.19	<5.0	<5.0
72	12/8/2011	< 0.20	<5.0	<5.0

Notes:

TPH = total petroleum hydocarbons

mg/kg = milligrams per kilogram

<0.22 = Analyte concentration not detected above specified method detection limit.

TABLE 3-2 Detected Volatile Organic Compounds In Soil Analytical Results Defense Fuel Support Point

Norwalk, California

	Units	advis Acetone	百百百百百百百百百百百百百百百百百百百百百 百百万 百百万 百百万 百万 百万	时 [1] Butanone-2 [2] Butanone-2	and the second s	Example 2 Sec-Butylbenzene	and tert-Butylbenzene	at Starbon Disulfide	여여 여여 05	تقليم Sopropylbenzene	and the constant of the consta	ର୍ଷ ଜୁମ ଜୁମ	ୁମ୍ମ ଜୁନ୍ମ ଘ	at Joinene	전 전 ⁰⁵ ⁰⁵ ⁰⁵ ⁰⁵	전 전 05 05	and the second s	ad de la companya de de la companya de la company	ar Methyl-t-Butyl Ether	D Tert-Butly Alcohol
Sample Location		PO 0	F-00	F-00	r:00	r:00	P-00	r-00	F-00	r-00	P-00	P-00	F-00	F-00	r-00	r:0'-0	P*0/0	P-00	P-0/0	100
and Depth	Sample Date																			
UVB-2:																				
11	12/8/2011				97	64			18 J			91 J			73 J		68 J			
30	12/8/2011	19 J	2.5	4.0 J					0.33 J		1.3 J			2.2			0.60 J			
43	12/8/2011	7.4 J	0.23 J					0.33 J			4.2 J									
65	12/8/2011	4.9 J	0.19 J								1.4 J									
72	12/8/2011	67	140	25	0.45 J			2.1 J	23	1.4		1.8 J	1.2 J	130	3.9	0.98 J	23	10		
76	12/8/2011	20 J		3.4 J																
UVB-9:																				
24	12/8/2011	18 J	1.4				0.23 J	1.5 J	0.55 J					1.1 J			1.3 J			
28	12/8/2011	320 J	91		120	59			510	130		210 J	200	1000	920	500	2400	740		
61	12/8/2011	33 J	0.50 J	7.3 J				0.38J	0.21 J					0.81 J			0.67J		0.34 J	
61 duplicate	12/8/2011	27 J	0.42 J	6.0 J				0.26 J	0.12 J					0.62 J			0.34 J		0.34J	
68	12/8/2011	20 J	0.38 J	3.7 J				1.7 J												8.0 J
72	12/8/2011		0.29 J																	

Notes:

 $\mu g/kg = micrograpms per kilogram$

Blank cells indicate that the concentration is below the method detection limit.

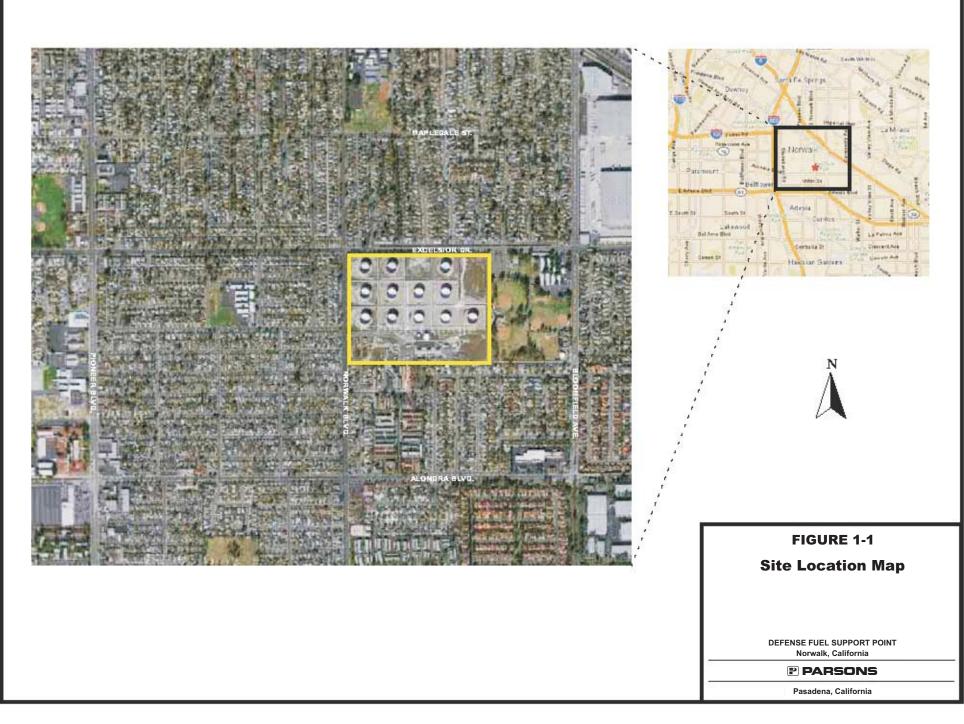
J = Analyte was detected at a concentration below the reporting limit and above the method detection limit. Reported value is estimated.

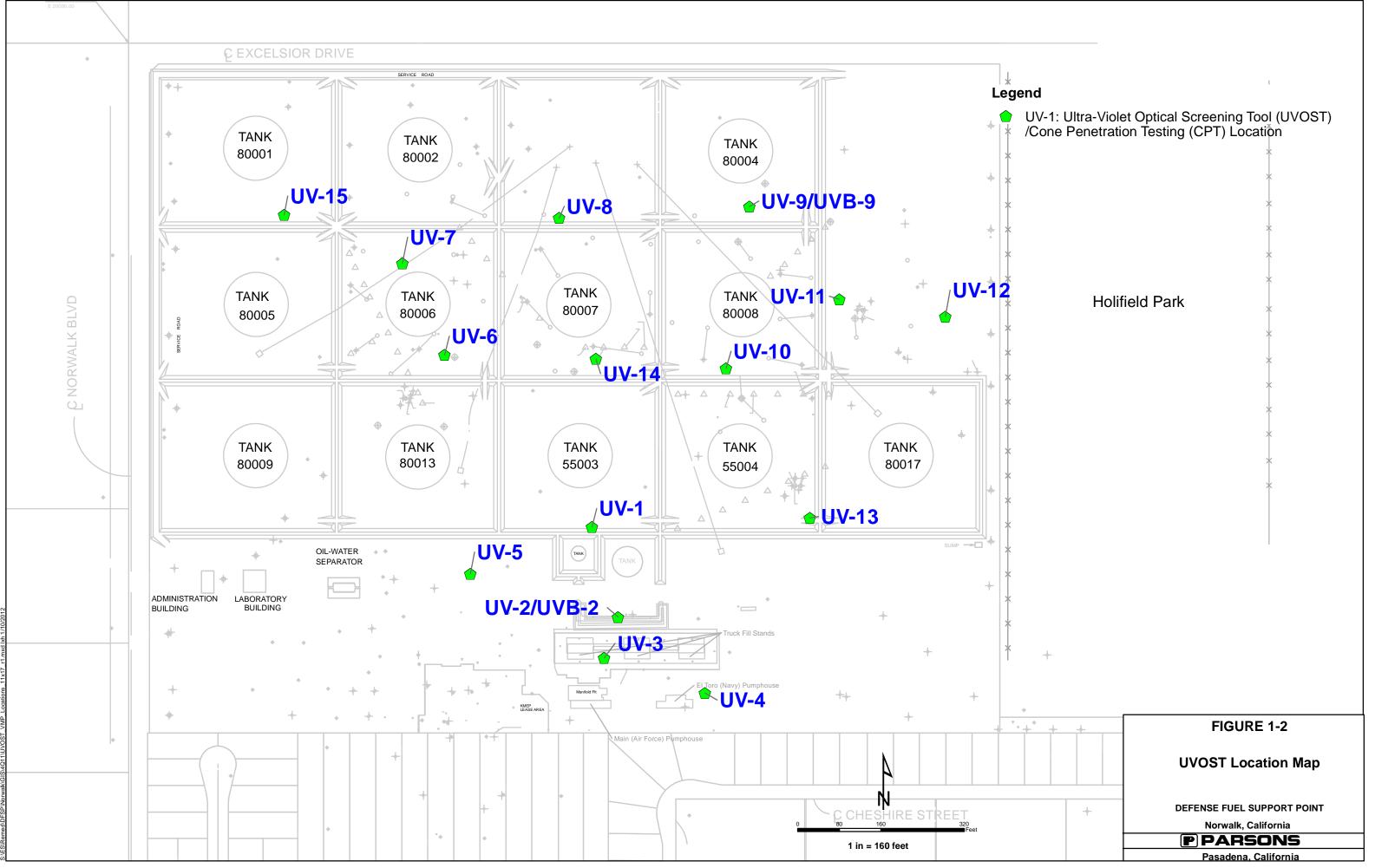
TABLE 3-3GMW-62 Product Baildown Test

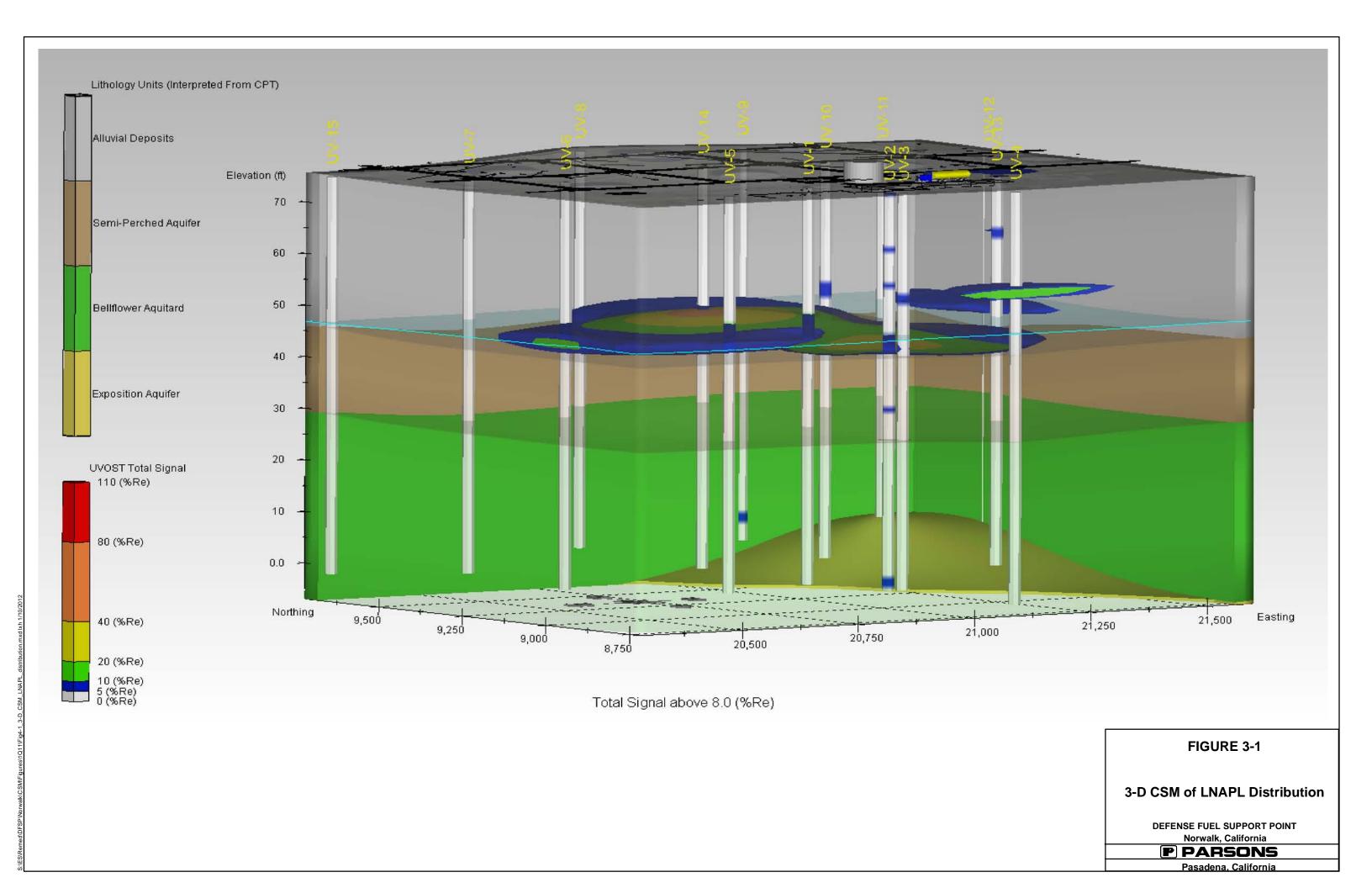
Defense Fuel Support Point Norwalk, California

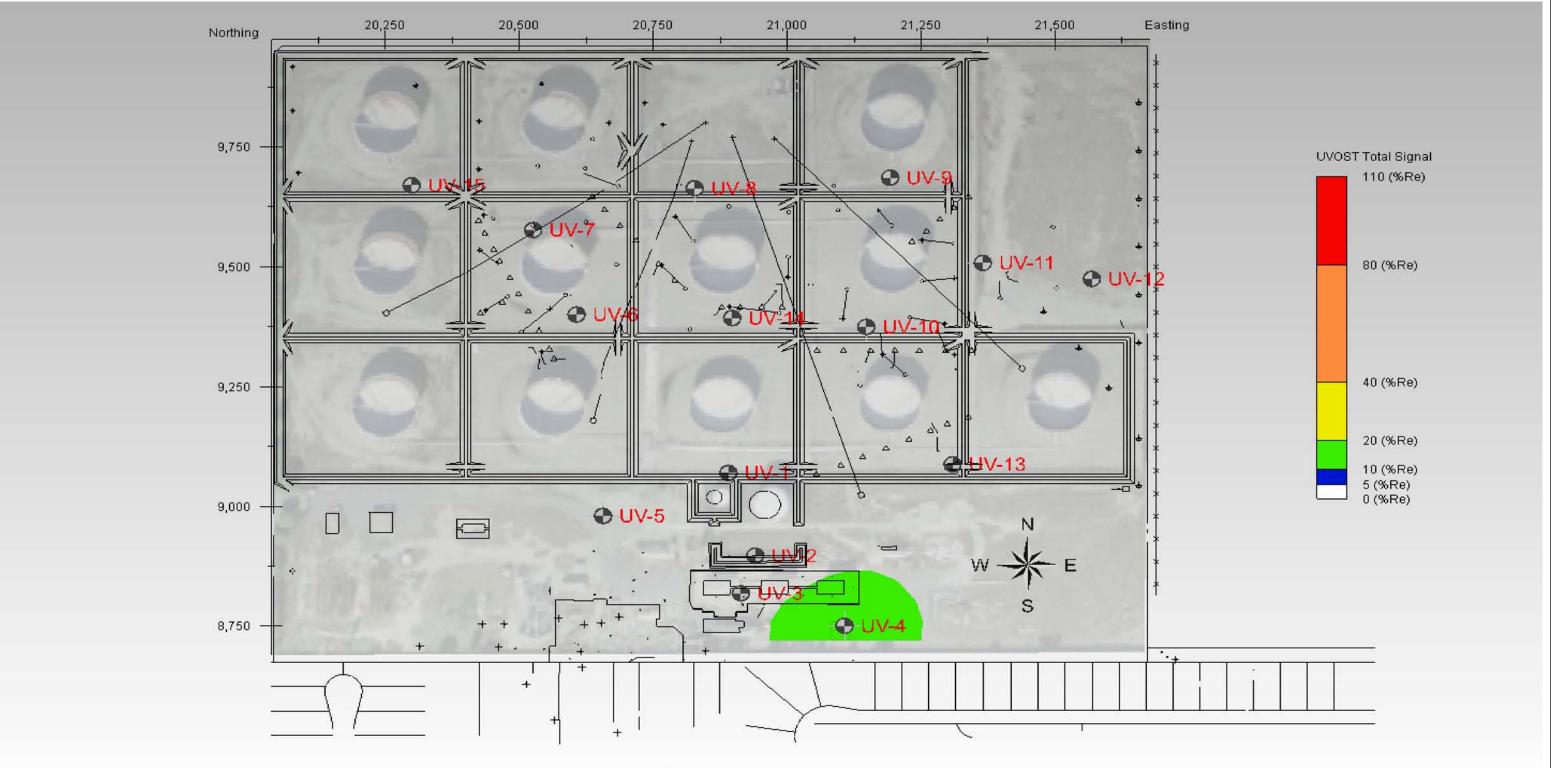
		DTP	DTW	LNAPL Thickness
Date & Time	Elapsed Time	(feet bgs)	(feet bgs)	(feet)
12/14/11 9:00	-41	29.86	30.78	0.92
12/14/11 9:42	1	30.47	30.47	0
12/14/11 9:43	2	30.35	30.37	0.02
12/14/11 9:44	3	30.32	30.34	0.02
12/14/11 9:45	4	30.28	30.30	0.02
12/14/11 9:46	5	30.23	30.25	0.02
12/14/11 9:47	6	30.21	30.23	0.02
12/14/11 9:48	7	30.19	30.21	0.02
12/14/11 9:49	8	30.18	30.20	0.02
12/14/11 9:50	9	30.17	30.19	0.02
12/14/11 9:51	10	30.16	30.18	0.02
12/14/11 9:56	15	30.13	30.15	0.02
12/14/11 10:01	20	30.12	30.14	0.02
12/14/11 10:11	30	30.11	30.13	0.02
12/14/11 10:21	40	30.09	30.11	0.02
12/14/11 10:31	50	30.08	30.10	0.02
12/14/11 10:41	60	30.07	30.09	0.02
12/14/11 11:41	120	30.04	30.07	0.03
12/14/11 12:41	180	30.01	30.05	0.04
12/14/11 13:41	240	29.98	30.02	0.04
12/14/11 14:41	300	29.98	30.02	0.04
12/14/11 15:41	360	29.97	30.01	0.04
12/15/11 7:45	1,324	29.79	29.82	0.03
12/19/11 15:04	7,523	29.33	29.34	0.01
12/23/11 9:15	12,934	30.08	30.20	0.12

Notes:

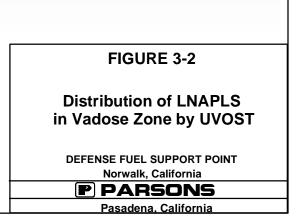

DTP = depth to product

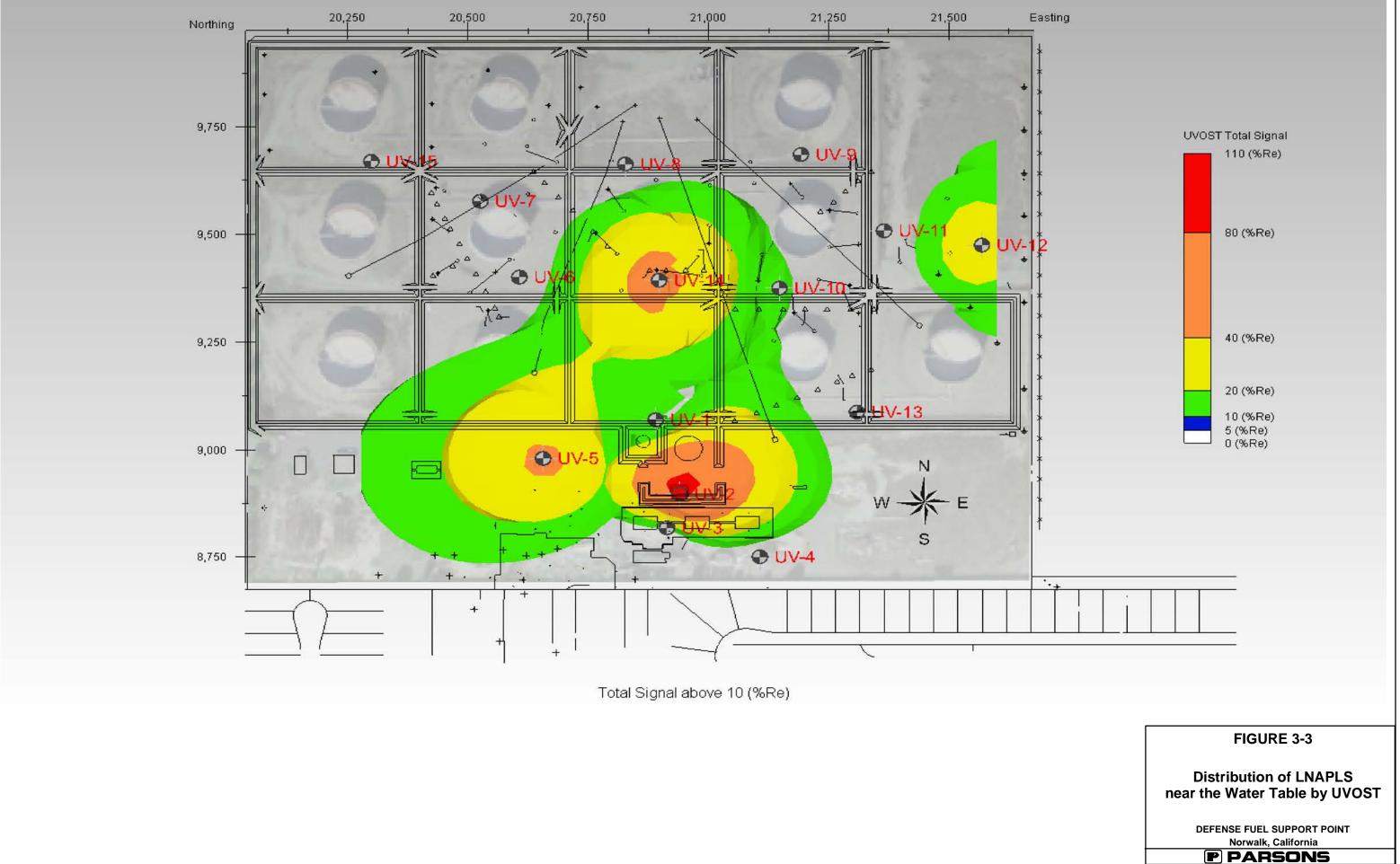

bgs = below ground surface

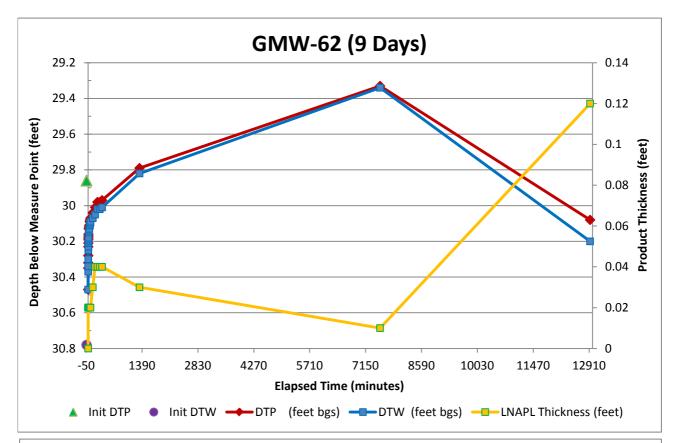

DTW = depth to water

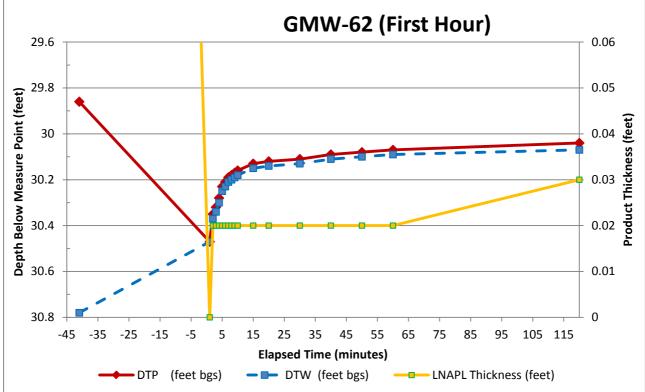

LNAPL = light non-aqueous phase liquid

FIGURES

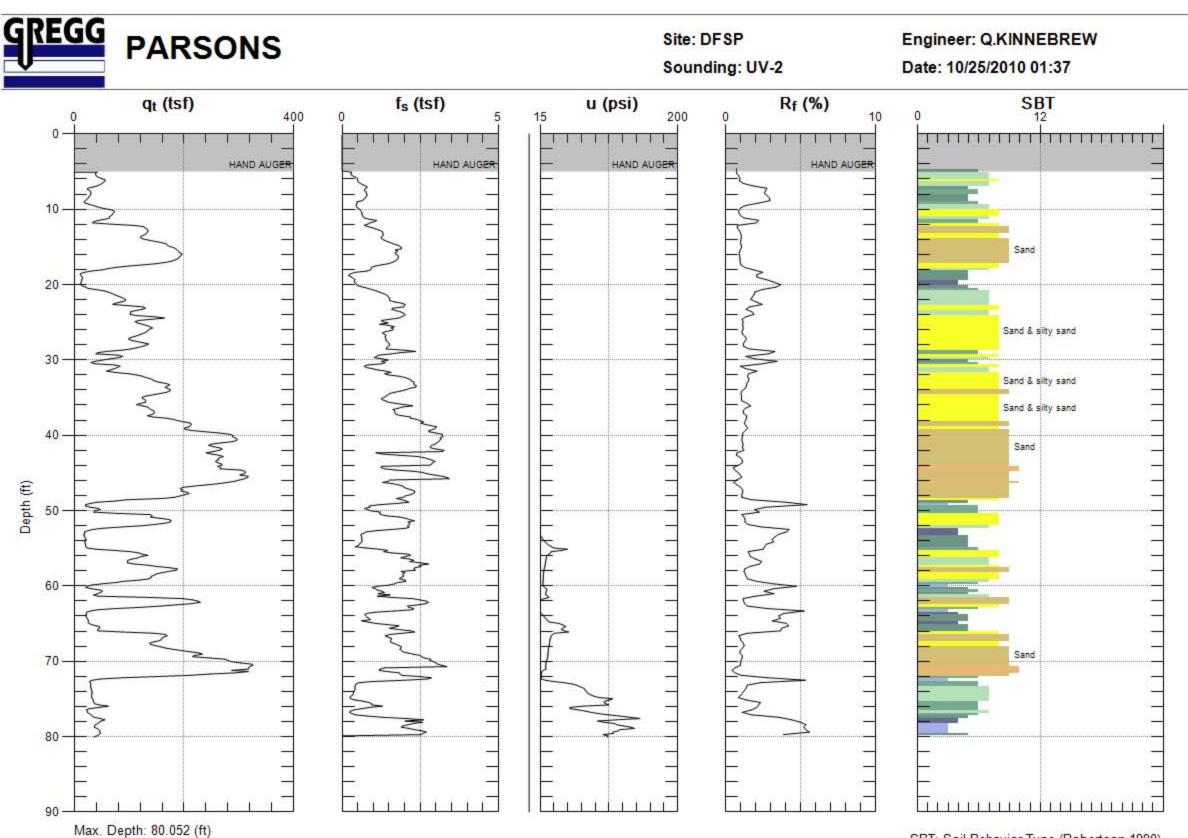


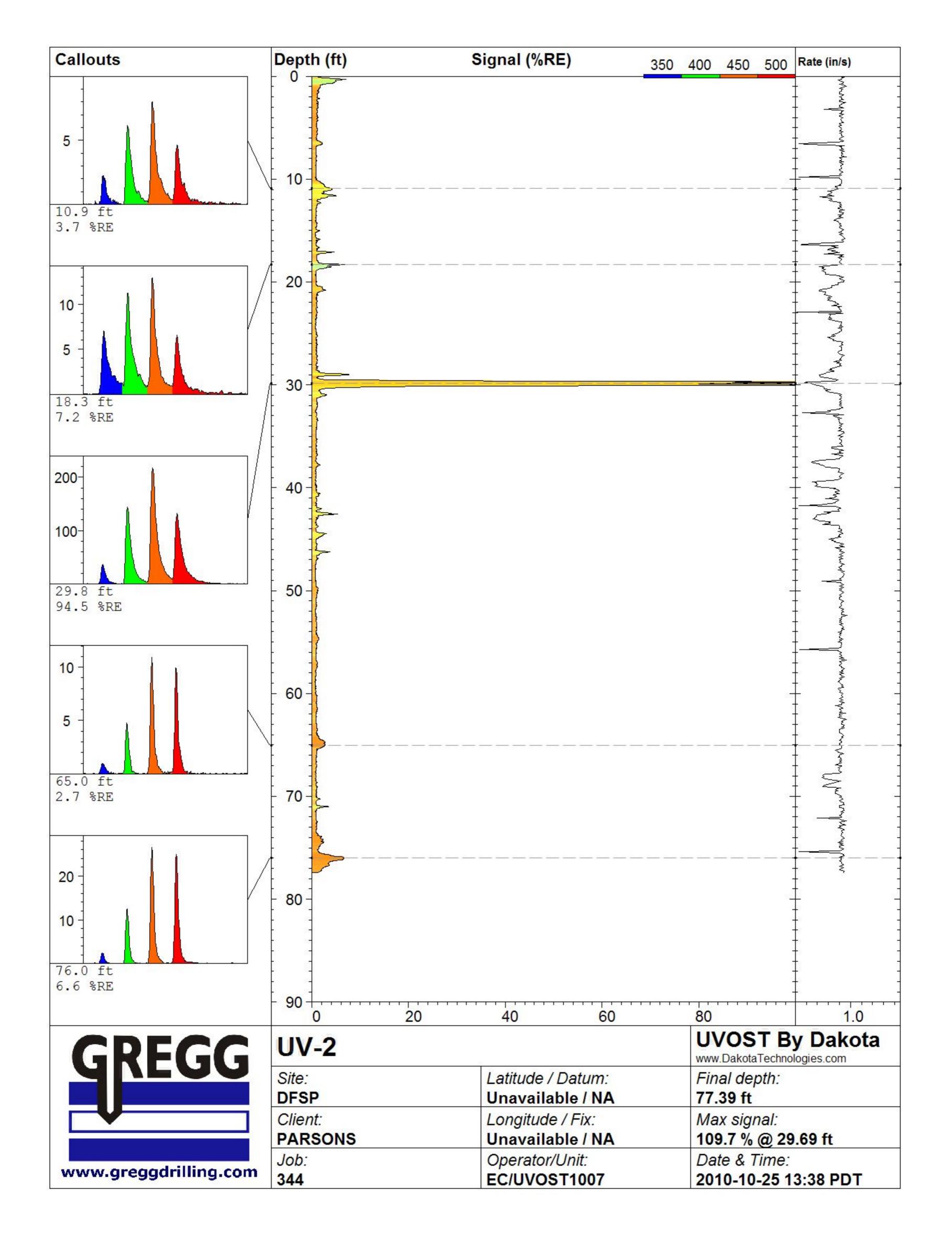


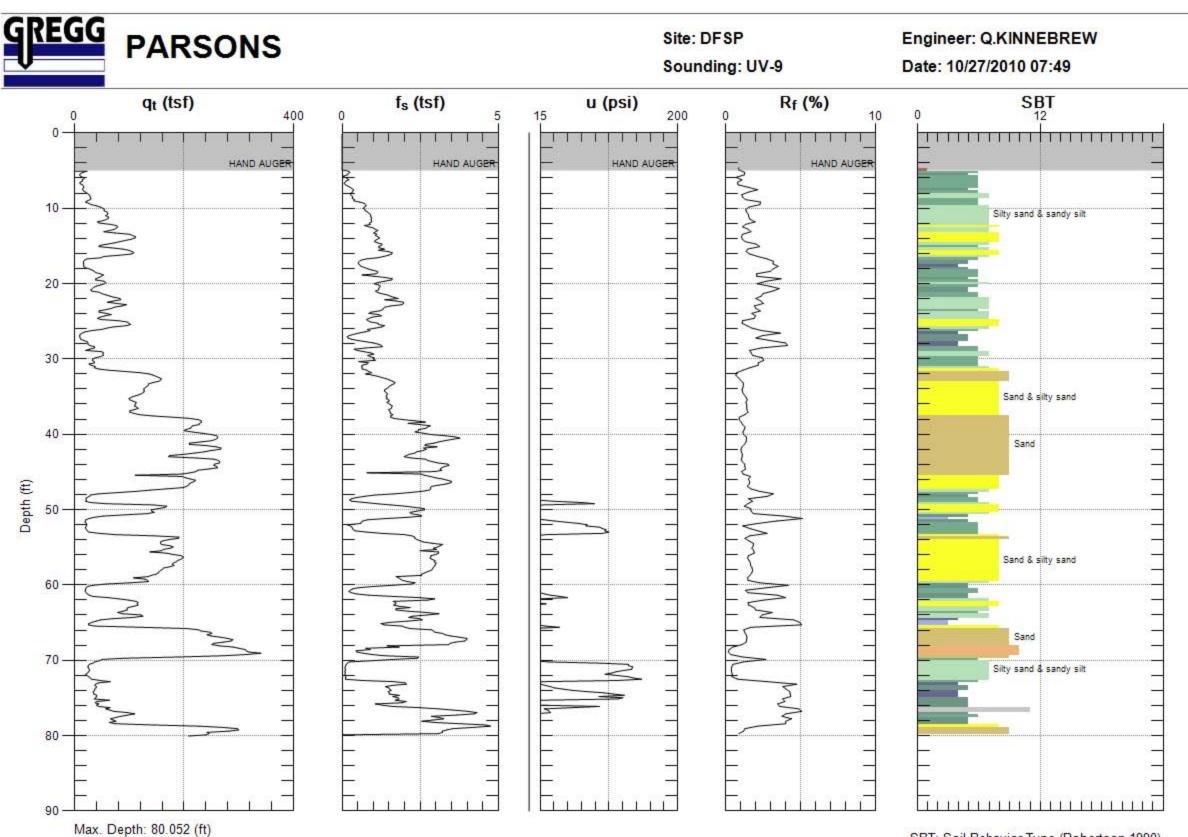

Total Signal above 10 (%Re)



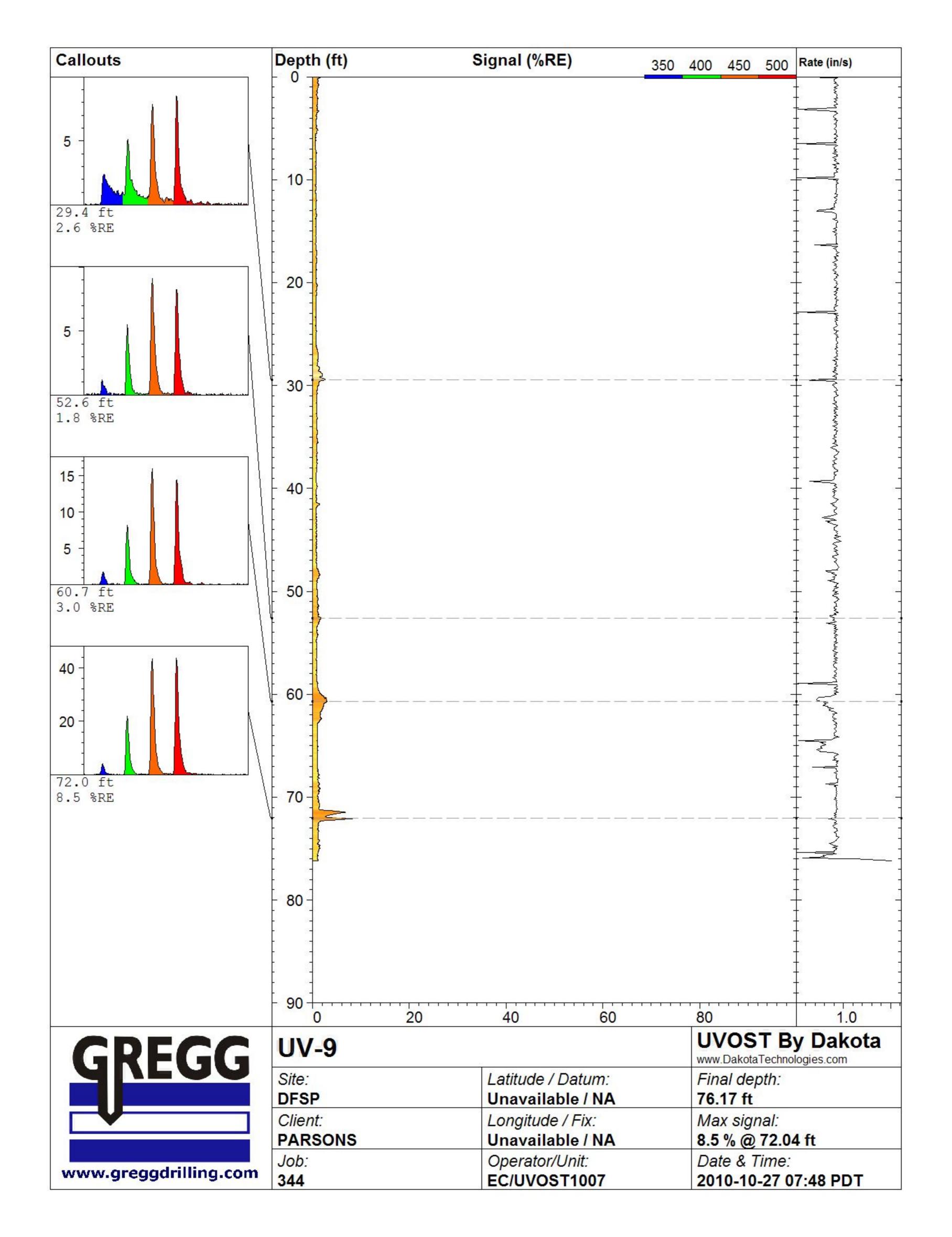
Pasadena, California

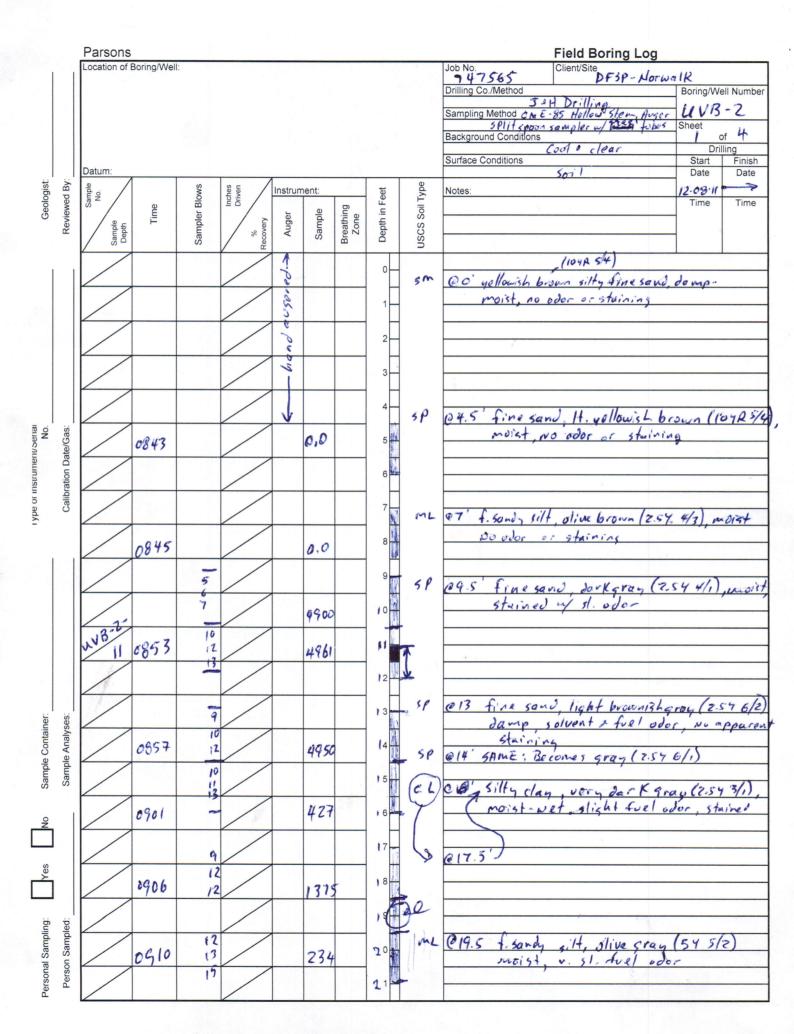

FIGURE 3-4 GMW-62 Product Recovery Test Hydrograph

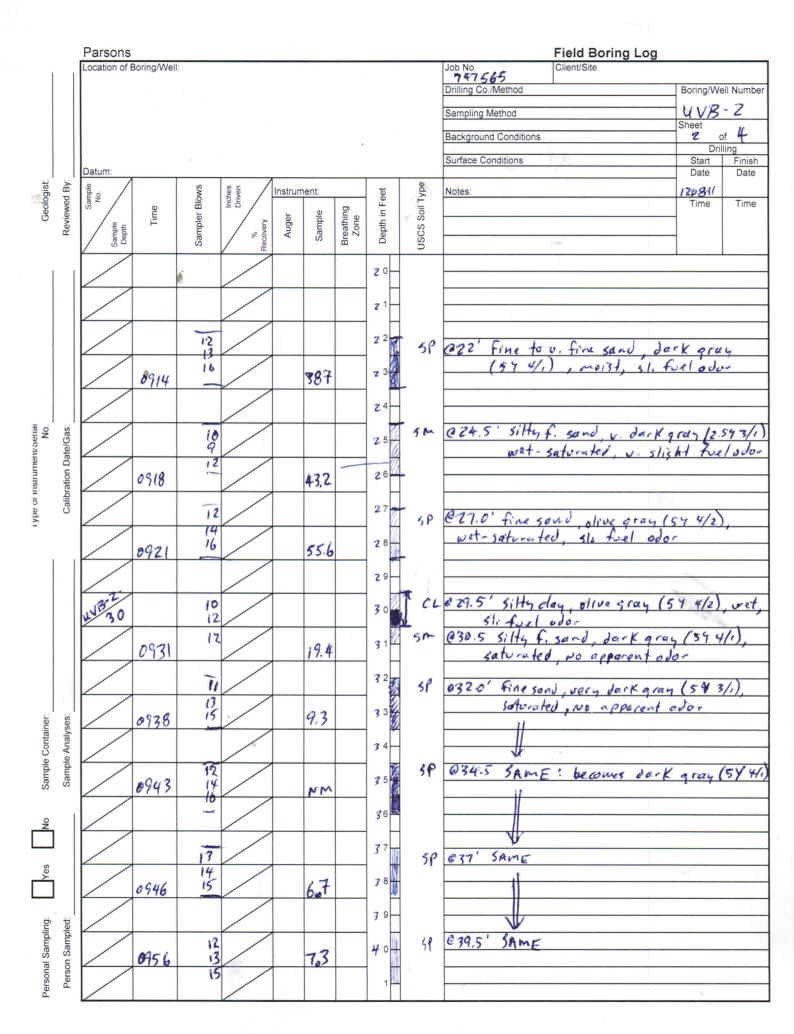

APPENDIX A

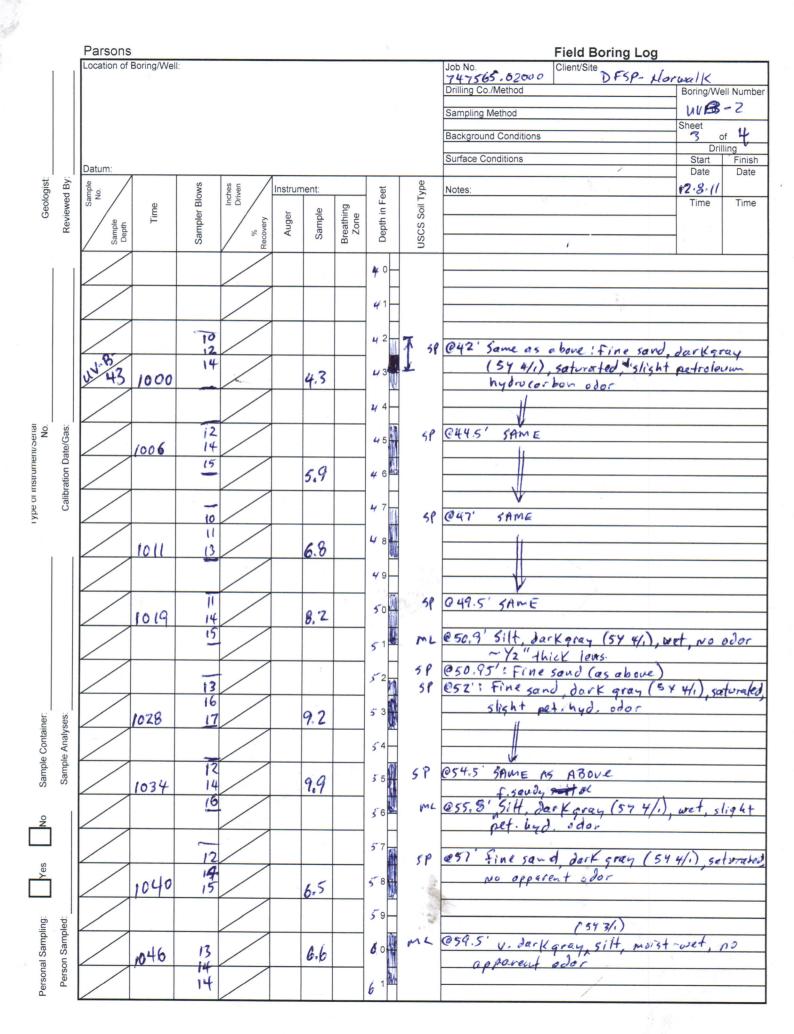

CPT AND UVOST DATA LOGS FOR UV-2 AND UV-9

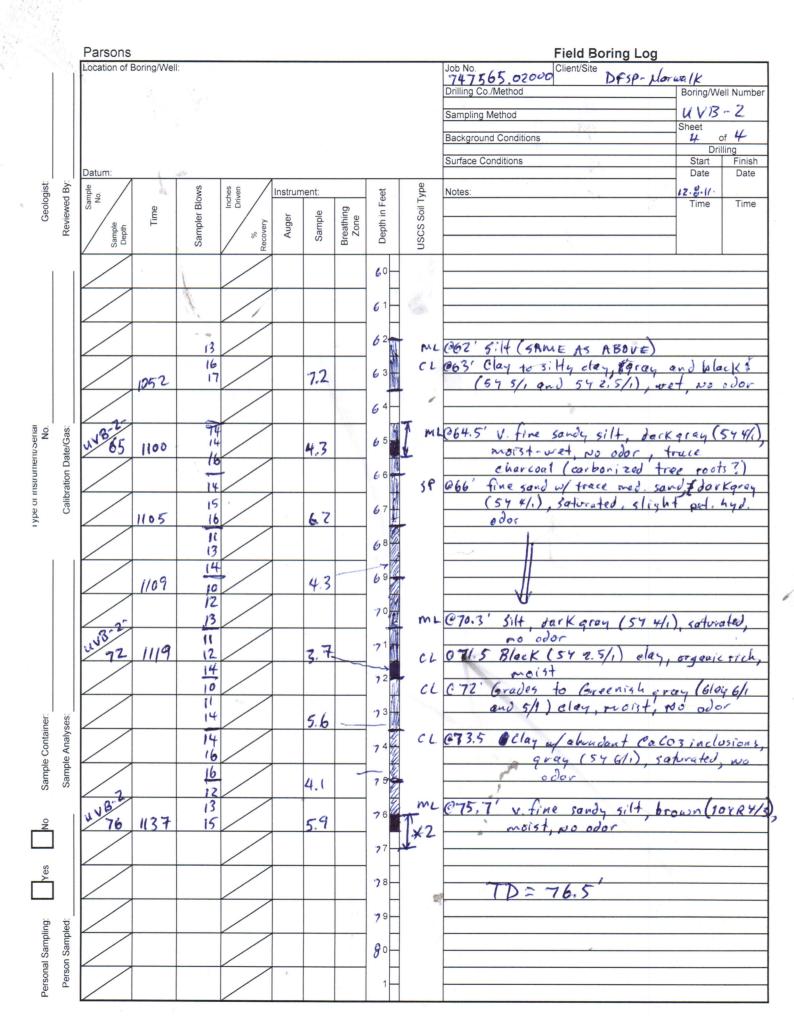
Avg. Interval: 0.328 (ft)

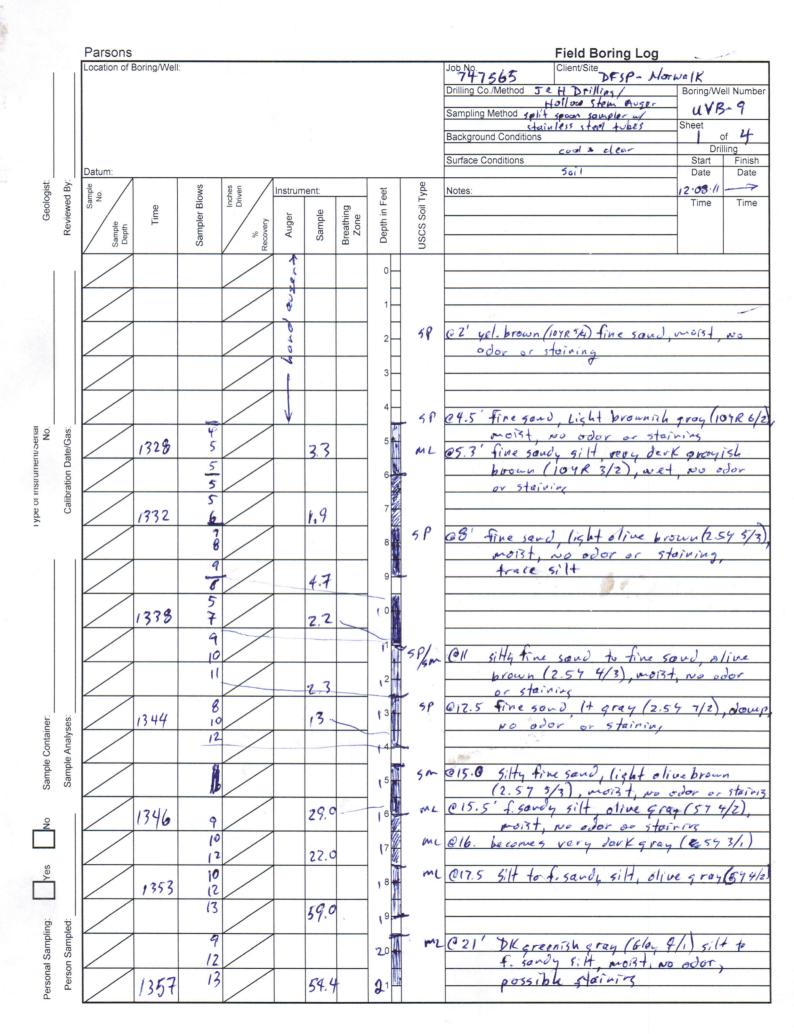

SBT: Soil Behavior Type (Robertson 1990)

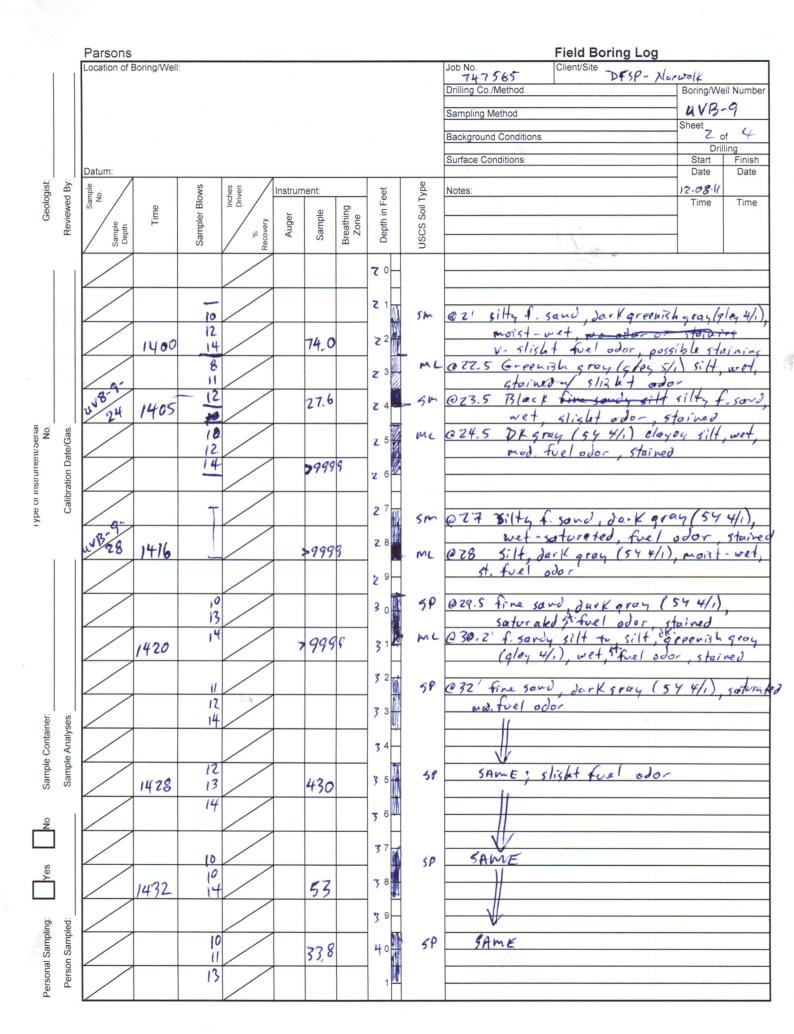

Avg. Interval: 0.328 (ft)

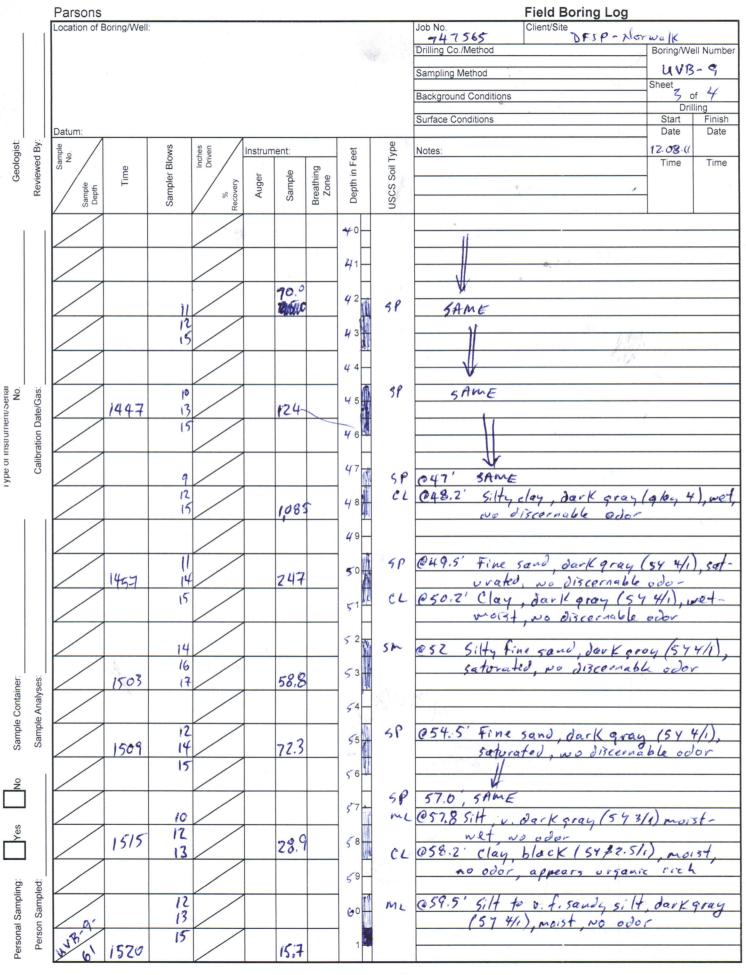

SBT: Soil Behavior Type (Robertson 1990)

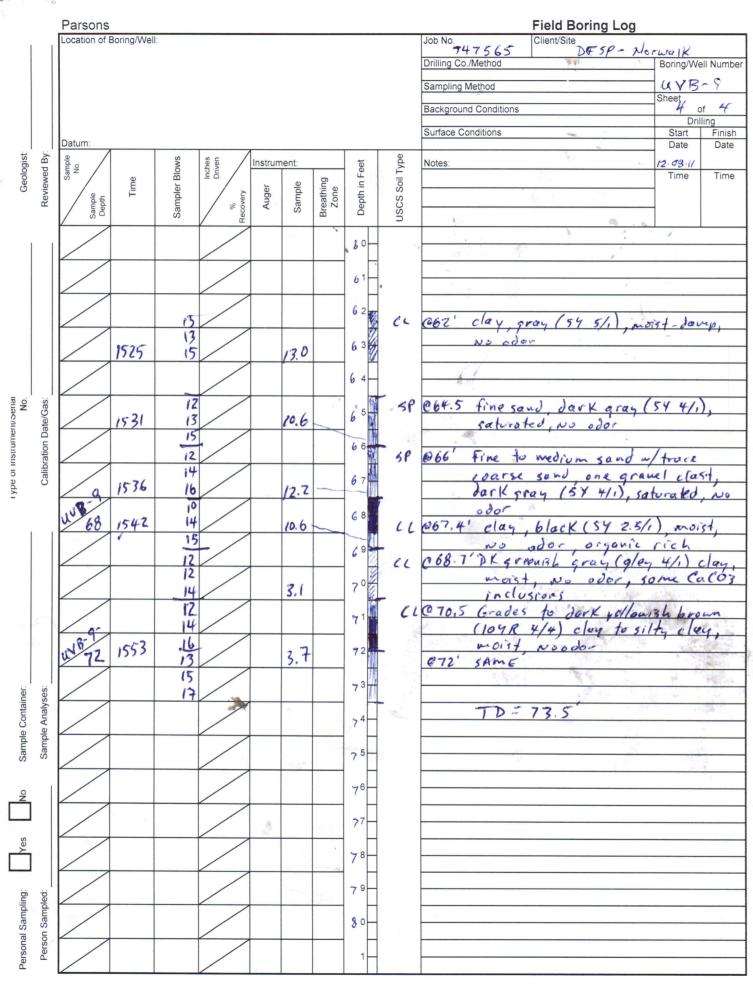



APPENDIX B


BORING LOGS FOR UVB-2 AND UVB-9







- Set

APPENDIX C

LABORATORY ANALYTICAL REPORTS

Supplemental Report 1

Additional requested analyses have been added to the original report.

CALSCIENCE WORK ORDER NUMBER: 11-12-0606

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: Parsons, Inc. Client Project Name: DFSP - Norwalk / 747565 Attention: Mary Lucas 100 West Walnut Street Pasadena, CA 91124-0002

Ranjit Y. J. Clarke

Approved for release on 01/5/2012 by: Ranjit Clarke Project Manager

ResultLink)

Email your PM ►

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety. Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

40 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501 • www.calscience.com

Contents

Client Project Name: DFSP - Norwalk / 747565 Work Order Number: 11-12-0606

1	Client Sample Data	3
	1.1 EPA 8015B (M) TPH JP5 (Solid)	3
	1.2 EPA 8015B (M) TPH Diesel (Solid)	7
	1.3 EPA 8015B (M) TPH Gasoline Prep 5035 (Solid)	11
	1.4 EPA 8260B Volatile Organics + Oxygenates Prep 5035 (Solid)	15
2	Quality Control Sample Data	30
	2.1 MS/MSD and/or Duplicate	30
	2.2 LCS/LCSD	32
3	Glossary of Terms and Qualifiers	39
4	Chain of Custody/Sample Receipt Form	40
5	Subcontract Narrative	44
6	Core Labs (Geotechnical Testing) - 11120606	45
7	Zymax (NAPL) - 11120606	54

Page 3 of 69

STEP IN ACCORDANCE

Parsons, Inc.			Date Received: 12/08/11						
100 West Walnut Street		Work Order No:						-12-0606	
Pasadena, CA 91124-0002			Preparati	on:			EF	PA 3550B	
			Method:				EPA 8	015B (M)	
Project: DFSP - Norwalk / 74	7565						Pa	ige 1 of 4	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
UVB-2-11		11-12-0606-1-C	12/08/11 08:53	Solid	GC 48	12/12/11	12/12/11 22:33	111212B13	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as JP5	460	5.0	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl	96	61-145							
UVB-2-30		11-12-0606-2-C	12/08/11 09:31	Solid	GC 48	12/12/11	12/12/11 22:48	111212B13	
Parameter	Result	<u>RL</u>	DF	Qual	Units				
TPH as JP5	ND	5.0	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl	112	61-145							
UVB-2-43		11-12-0606-3-C	12/08/11 10:00	Solid	GC 48	12/12/11	12/12/11 23:03	111212B13	
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as JP5	ND	5.0	1	<u>Quui</u>	mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl	101	61-145							
UVB-2-65		11-12-0606-4-C	12/08/11 11:00	Solid	GC 48	12/12/11	12/12/11 23:18	111212B13	
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as JP5	ND	<u>KL</u> 5.0	<u>DF</u> 1	<u>Quai</u>	mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl	101	61-145							

hu

Page 4 of 69

Solution IN ACCORDANCE

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002	Date Received: Work Order No: Preparation: Method:					12/08/11 11-12-0606 EPA 3550B EPA 8015B (M)		
Project: DFSP - Norwalk / 74	7565						Pa	ige 2 of 4
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UVB-2-76		11-12-0606-5-C	12/08/11 11:37	Solid	GC 48	12/12/11	12/12/11 23:33	111212B13
Parameter TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	Qual	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 102	Control Limits 61-145		<u>Qual</u>				
UVB-2-72		11-12-0606-6-C	12/08/11 11:19	Solid	GC 48	12/12/11	12/12/11 23:48	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 100	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-24		11-12-0606-7-C	12/08/11 14:05	Solid	GC 48	12/12/11	12/13/11 00:03	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 103	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-28		11-12-0606-8-C	12/08/11 14:16	Solid	GC 48	12/12/11	12/13/11 00:18	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> 7.0	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u> HD	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 96	Control Limits 61-145		<u>Qual</u>				

n M

Page 5 of 69

teturn to Cor

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-000		Work Order No:11-7Preparation:EPA					12/08/11 -12-0606 PA 3550B 015B (M)	
Project: DFSP - Norwalk	/ 747565						Pa	ige 3 of 4
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UVB-9-61		11-12-0606-9-C	12/08/11 15:20	Solid	GC 48	12/12/11	12/13/11 00:33	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 103	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-61D		11-12-0606-10-C	12/08/11 15:20	Solid	GC 48	12/12/11	12/13/11 00:48	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 100	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-68		11-12-0606-11-C	12/08/11 15:42	Solid	GC 48	12/12/11	12/13/11 01:32	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 100	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-72		11-12-0606-12-C	12/08/11 15:52	Solid	GC 48	12/12/11	12/13/11 01:47	111212B13
<u>Parameter</u> TPH as JP5	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 102	<u>Control Limits</u> 61-145		<u>Qual</u>				

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Mulana

12/08/11 11-12-0606 EPA 3550B EPA 8015B (M)

Page 4 of 4

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method:

Project: DFSP - Norwalk / 747565

-								0
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-295-86	N/A	Solid	GC 48	12/12/11	12/12/11 20:19	111212B13
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as JP5	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	101	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 7 of 69

Parsons, Inc.			Date Rec		12/08/11			
100 West Walnut Street			Work Ord		11-12-0606			
Pasadena, CA 91124-0002			Preparati	on:			EF	PA 3550B
			Method:				EPA 8	015B (M)
Project: DFSP - Norwalk / 74	7565						Pa	ige 1 of 4
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UVB-2-11		11-12-0606-1-C	12/08/11 08:53	Solid	GC 48	12/12/11	12/12/11 22:33	111212B12
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
TPH as Diesel	510	5.0	1	HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	96	61-145						
UVB-2-30		11-12-0606-2-C	12/08/11 09:31	Solid	GC 48	12/12/11	12/12/11 22:48	111212B12
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Diesel	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	112	61-145						
UVB-2-43		11-12-0606-3-C	12/08/11 10:00	Solid	GC 48	12/12/11	12/12/11 23:03	111212B12
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Diesel	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	101	61-145						
UVB-2-65		11-12-0606-4-C	12/08/11 11:00	Solid	GC 48	12/12/11	12/12/11 23:18	111212B12
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	101	61-145						

М

Page 8 of 69

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-000					Date Received: Work Order No: Preparation: Method:				
Project: DFSP - Norwalk /	747565						Pa	ige 2 of 4	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
UVB-2-76		11-12-0606-5-C	12/08/11 11:37	Solid	GC 48	12/12/11	12/12/11 23:33	111212B12	
<u>Parameter</u> TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg				
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 102	Control Limits 61-145		<u>Qual</u>					
UVB-2-72		11-12-0606-6-C	12/08/11 11:19	Solid	GC 48	12/12/11	12/12/11 23:48	111212B12	
<u>Parameter</u> TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg				
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 100	<u>Control Limits</u> 61-145		<u>Qual</u>					
UVB-9-24		11-12-0606-7-C	12/08/11 14:05	Solid	GC 48	12/12/11	12/13/11 00:03	111212B12	
Parameter TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg				
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 103	Control Limits 61-145		<u>Qual</u>					
UVB-9-28		11-12-0606-8-C	12/08/11 14:16	Solid	GC 48	12/12/11	12/13/11 00:18	111212B12	
<u>Parameter</u> TPH as Diesel	<u>Result</u> 7.3	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u> HD	<u>Units</u> mg/kg				
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 96	<u>Control Limits</u> 61-145		<u>Qual</u>					

М

Page 9 of 69

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-000	100 West Walnut Street Pasadena, CA 91124-0002				Date Received: Work Order No: Preparation: Method:			
Project: DFSP - Norwalk	/ 747565						Pa	ige 3 of 4
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UVB-9-61		11-12-0606-9-C	12/08/11 15:20	Solid	GC 48	12/12/11	12/13/11 00:33	111212B12
<u>Parameter</u> TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 103	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-61D		11-12-0606-10-C	12/08/11 15:20	Solid	GC 48	12/12/11	12/13/11 00:48	111212B12
Parameter TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 100	<u>Control Limits</u> 61-145		<u>Qual</u>				
UVB-9-68		11-12-0606-11-C	12/08/11 15:42	Solid	GC 48	12/12/11	12/13/11 01:32	111212B12
<u>Parameter</u> TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
<u>Surrogates:</u> Decachlorobiphenyl	<u>REC (%)</u> 100	<u>Control Limits</u> 61-145		Qual				
UVB-9-72		11-12-0606-12-C	12/08/11 15:52	Solid	GC 48	12/12/11	12/13/11 01:47	111212B12
<u>Parameter</u> TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/kg			
Surrogates: Decachlorobiphenyl	<u>REC (%)</u> 102	<u>Control Limits</u> 61-145		<u>Qual</u>				

М

12/08/11 11-12-0606 EPA 3550B

EPA 8015B (M)

Page 4 of 4

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method:

Project: DFSP - Norwalk / 747565

								<u> </u>
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-275-4,300	N/A	Solid	GC 48	12/12/11	12/12/11 20:19	111212B12
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	101	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 11 of 69

Senerace H

Parsons, Inc.			12/08/11					
100 West Walnut Street			Work Ord	der No:			11	-12-0606
Pasadena, CA 91124-0002			Preparati	on:			E	PA 5035
			Method:				EPA 8	015B (M)
Project: DFSP - Norwalk / 74	7565						Pa	ige 1 of 4
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UVB-2-11		11-12-0606-1-J	12/08/11 08:53	Solid	GC 18	12/08/11	12/12/11 13:06	111212B01
			00.55				10100	
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	200	5.8	23	HD	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	112	60-126						
UVB-2-30		11-12-0606-2-H	12/08/11 09:31	Solid	GC 18	12/08/11	12/10/11 05:44	111209B02
Parameter	Booult	DI	DE	Qual	Unito			
TPH as Gasoline	<u>Result</u> 0.38	<u>RL</u> 0.22	<u>DF</u> 0.867	<u>Qual</u>	<u>Units</u> mg/kg			
IFIT as Gasoline	0.00	0.22	0.007		ing/ig			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	99	60-126						
UVB-2-43		11-12-0606-3-H	12/08/11 10:00	Solid	GC 18	12/08/11	12/10/11 06:58	111209B02
Parameter	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	0.22	0.89	<u>Quai</u>	mg/kg			
					0.0			
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	91	60-126						
UVB-2-65		11-12-0606-4-H	12/08/11 11:00	Solid	GC 18	12/08/11	12/10/11 06:21	111209B02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.21	0.826	<u>ecou</u>	mg/kg			
	<u>REC (%)</u>	Control Limita		<u>Qual</u>				
Surrogates: 1,4-Bromofluorobenzene	<u>NEC (76)</u> 92	<u>Control Limits</u> 60-126		<u>udi</u>				
.,1011011010000120110	<u>.</u>	00 120						

Page 12 of 69

Sineac

Parsons, Inc.			Date Rec		12/08/11					
100 West Walnut Street		Work Order No:					11-12-0606			
Pasadena, CA 91124-0002			Preparati	on:			EPA 5035			
			Method:				EPA 8	015B (M)		
Project: DFSP - Norwalk / 74	7565						Pa	ge 2 of 4		
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
UVB-2-76		11-12-0606-5-I	12/08/11 11:37	Solid	GC 18	12/08/11	12/10/11 07:34	111209B02		
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
TPH as Gasoline	ND	0.19	0.773		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	89	60-126								
UVB-2-72		11-12-0606-6-J	12/08/11 11:19	Solid	GC 18	12/08/11	12/10/11 15:39	111209B02		
Parameter	Result	RL	DF	Qual	Units					
TPH as Gasoline	0.34	0.21	0.825	<u>Quai</u>	mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	68	60-126								
UVB-9-24		11-12-0606-7-H	12/08/11 14:05	Solid	GC 18	12/08/11	12/10/11 10:40	111209B02		
Devemeter	Decult	DI	DE	Qual	Linita					
<u>Parameter</u> TPH as Gasoline	<u>Result</u> 0.76	<u>RL</u> 0.21	<u>DF</u> 0.831	<u>Qual</u>	<u>Units</u> mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	102	60-126								
UVB-9-28		11-12-0606-8-J	12/08/11 14:16	Solid	GC 18	12/08/11	12/12/11 12:28	111212B01		
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
TPH as Gasoline	150	5.2	20.9		mg/kg					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>						
1,4-Bromofluorobenzene	155	60-126		2,7						

Parsons, Inc.

100 West Walnut Street

Date Received:

Work Order No:

Page 13 of 69

12/08/11 11-12-0606

Pasadena, CA 91124-0002 Preparation: EPA 5035 Method: EPA 8015B (M) Project: DFSP - Norwalk / 747565 Page 3 of 4 Date Date/Time Lab Sample Date/Time Instrument Prepared QC Batch ID Matrix Analyzed Client Sample Number Number Collected 12/10/11 UVB-9-61 12/08/11 Solid GC 18 12/08/11 111209B02 11-12-0606-9-H 08:11 Parameter **Result** RL DF Qual <u>Units</u> ND 0.19 0.75 mg/kg TPH as Gasoline REC (%) **Control Limits** Qual Surrogates: 92 1,4-Bromofluorobenzene 60-126 12/10/11 UVB-9-61D Solid GC 18 12/08/11 111209B02 11-12-0606-10-H 12/08/11 08:48 Parameter **Result** RL DF Qual Units ND 0.20 0.797 TPH as Gasoline mg/kg REC (%) Qual Surrogates: Control Limits 1,4-Bromofluorobenzene 91 60-126 12/10/11 UVB-9-68 111209B02 Solid GC 18 12/08/11 12/08/11 11-12-0606-11-J 09:25 RL DF Qual Parameter **Result** Units ND 0.19 0.769 mg/kg TPH as Gasoline REC (%) Control Limits Qual Surrogates: 1,4-Bromofluorobenzene 86 60-126

12/10/11 UVB-9-72 Solid GC 18 12/08/11 111209B02 11-12-0606-12-J 12/08/11 15:52 10:03 Parameter Result RL DF Qual Units 0.20 0.785 ND mg/kg TPH as Gasoline REC (%) Surrogates: Control Limits Qual 1,4-Bromofluorobenzene 90 60-126

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan

Page 14 of 69

* nelao

Parsons, Inc.	
100 West Walnut Street	
Pasadena, CA 91124-0002	

Date Received: Work Order No: Preparation: Method:

12/08/11 11-12-0606 EPA 5035 EPA 8015B (M)

Page 4 of 4

Project: DFSP - Norwalk / 747565

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-285-4,008	N/A	Solid	GC 18	12/09/11	12/10/11 04:30	111209B02
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.25	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	84	60-126						
Method Blank		099-12-285-4,009	N/A	Solid	GC 18	12/12/11	12/12/11 10:36	111212B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	10	40		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	60-126						

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 15 of 69

12/08/11

Parsons, Inc. + \//~ α λ 10 Ρ

100 West Walnut Street	Work Order No: 11-12-0606							6							
Pasadena, CA 91124-0002					Preparation:						EPA 5035				
	002				•										
					Method					EPA	8260E				
					Units:						ug/kថ	g			
Project: DFSP - Norwal	k / 74756	65								Page	1 of 15	5			
			Lab Sa	•	Date/Time	Motrix	Instrument	Date		e/Time		ah ID			
Client Sample Number			Num	ber	Collected	Matrix	Instrument	Prepar		alyzed	QC Bate				
UVB-2-11			11-12-0	606-1-G	12/08/11 08:53	Solid	GC/MS Z	12/08/ ⁻		/09/11 4:58	111209	L01			
Comment(s): -Results were e	valuated to th	ne MDL, c	oncentratio	ons >= to the N	/IDL but < RL	, if found, ar	e qualified wi	th a "J" flag] .						
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	<u>Qual</u>			
Acetone	ND	2900	370	58.7	c-1,3-Dichlo	propropene		ND	59	15	58.7				
Benzene	ND	59	7.6	58.7	t-1,3-Dichlo	ropropene		ND	120	36	58.7				
Bromobenzene	ND	59	12	58.7	Ethylbenzer	ne		18	59	8.9	58.7	J			
Bromochloromethane	ND	120	41	58.7	2-Hexanone	9		ND	1200	100	58.7				
Bromodichloromethane	ND	59	14	58.7	Isopropylbe	nzene		ND	59	32	58.7				
Bromoform	ND	290	47	58.7	p-Isopropylt	oluene		ND	59	37	58.7				
Bromomethane	ND	1200	550	58.7	Methylene (Chloride		ND	590	79	58.7				
2-Butanone	ND	1200	220	58.7	4-Methyl-2-	Pentanone		ND	1200	250	58.7				
n-Butylbenzene	97	59	9.2	58.7	Naphthalen	е		91	590	48	58.7	J			
sec-Butylbenzene	64	59	34	58.7	n-Propylber	nzene		ND	120	29	58.7				
tert-Butylbenzene	ND	59	8.9	58.7	Styrene			ND	59	35	58.7				
Carbon Disulfide	ND	590	18	58.7	1,1,1,2-Tetr	achloroetha	ne	ND	59	14	58.7				
Carbon Tetrachloride	ND	59	17	58.7	1,1,2,2-Tetr	achloroetha	ne	ND	120	20	58.7				
Chlorobenzene	ND	59	13	58.7	Tetrachloro	ethene		ND	59	12	58.7				
Chloroethane	ND	120	110	58.7	Toluene			ND	59	30	58.7				
Chloroform	ND	59	14	58.7	1,2,3-Trichl	orobenzene		ND	120	54	58.7				
Chloromethane	ND	1200	40	58.7	1,2,4-Trichl	orobenzene		ND	120	18	58.7				
2-Chlorotoluene	ND	59	14	58.7	1,1,1-Trichl			ND	59	13	58.7				
4-Chlorotoluene	ND	59	13	58.7	1,1,2-Trichl			ND	59	56	58.7				
Dibromochloromethane	ND	120	33	58.7			ifluoroethane	ND	590	21	58.7				
1,2-Dibromo-3-Chloropropane	ND	290	100	58.7	Trichloroeth			ND	120	18	58.7				
1,2-Dibromoethane	ND	59	15	58.7	Trichloroflu			ND	590	22	58.7				
Dibromomethane	ND	59	45	58.7	1,2,3-Trichl			ND	120	40	58.7				
1,2-Dichlorobenzene	ND	59	13	58.7	1,2,4-Trime	• •		73	120	34	58.7	J			
1,3-Dichlorobenzene	ND	59	10	58.7	1,3,5-Trime			ND	120	32	58.7				
1,4-Dichlorobenzene	ND	59	13	58.7	Vinyl Acetat			ND	590	280	58.7				
Dichlorodifluoromethane	ND	120	26	58.7	Vinyl Chlori			ND	59	30	58.7				
1,1-Dichloroethane	ND	59	59	58.7	p/m-Xylene			68	120	16	58.7	J			
1,2-Dichloroethane	ND	59	18	58.7	o-Xylene			ND	59	33	58.7				
1,1-Dichloroethene	ND	59	20	58.7	Methyl-t-Bu	tvl Ether (M	(BE)	ND	120	17	58.7				
c-1,2-Dichloroethene	ND	59	16	58.7	Tert-Butyl A			ND	1200	300	58.7				
t-1,2-Dichloroethene	ND	59	30	58.7	,	Ether (DIPE	,	ND	59	28	58.7				
1,2-Dichloropropane	ND	59	26	58.7		Ether (ETE	,	ND	59	30	58.7				
1,3-Dichloropropane	ND	59	15	58.7	Tert-Amyl-N			ND	59	21	58.7				
2,2-Dichloropropane	ND	290	19	58.7	Ethanol		(1) (1)(2)	ND	29000	4900	58.7				
1,1-Dichloropropene	ND	120	19	58.7					20000		00.1				
Surrogates:	<u>REC (%)</u>		<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>		<u>Q</u>	ual				
	444	Limits			Diharanafi			00	Limits						
1,4-Bromofluorobenzene	111	80-120			Dibromofluc			92	79-133						
1,2-Dichloroethane-d4	94	71-155			Toluene-d8			105	80-120						

hM

DF - Dilution Factor , Qual - Qualifiers Return to Contents

Page 16 of 69

12/08/11

Parsons, Inc. 100 West Walnut Street Pa

100 West Walnut Stree		Work Order No: 11-12-0606									
Pasadena, CA 91124-0	002						EP	A 5035			
					Prepara Method:						8260B
										EFA	
					Units:						ug/kg
Project: DFSP - Norwa	alk / 74756	65								Page	2 of 15
			Lab Sa	mple	Date/Time			Date	e Da	te/Time	
Client Sample Number			Num	•	Collected	Matrix	Instrument			nalyzed	QC Batch ID
UVB-2-30			11-12-0)606-2-Е	12/08/11 09:31	Solid	GC/MS Z	12/08/		2/09/11 16:57	111209L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the N	MDL but < RL,	if found, ar	e qualified wi	th a "J" flaç	j.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF Qual	Parameter			Result	RL	MDL	<u>DF</u> Qual
Acetone	19	44	5.4	0.871 J	c-1,3-Dichlo	ropropene		ND	0.87	0.22	0.871
Benzene	2.5	0.87	0.11	0.871	t-1,3-Dichlor			ND	1.7	0.53	0.871
Bromobenzene	ND	0.87	0.18	0.871	Ethylbenzen	• •		0.33	0.87	0.13	0.871 J
Bromochloromethane	ND	1.7	0.60	0.871	2-Hexanone			ND	17	1.5	0.871
Bromodichloromethane	ND	0.87	0.20	0.871	Isopropylber	nzene		ND	0.87	0.48	0.871
Bromoform	ND	4.4	0.69	0.871	p-Isopropylte			ND	0.87	0.55	0.871
Bromomethane	ND	17	8.2	0.871	Methylene C			1.3	8.7	1.2	0.871 J
2-Butanone	4.0	17	3.3	0.871 J	4-Methyl-2-F			ND	17	3.8	0.871
n-Butylbenzene	ND	0.87	0.14	0.871	Naphthalene			ND	8.7	0.71	0.871
sec-Butylbenzene	ND	0.87	0.50	0.871	n-Propylben			ND	1.7	0.44	0.871
tert-Butylbenzene	ND	0.87	0.13	0.871	Styrene			ND	0.87	0.53	0.871
Carbon Disulfide	ND	8.7	0.27	0.871	1,1,1,2-Tetra	achloroetha	ne	ND	0.87	0.21	0.871
Carbon Tetrachloride	ND	0.87	0.25	0.871	1,1,2,2-Tetra			ND	1.7	0.30	0.871
Chlorobenzene	ND	0.87	0.20	0.871	Tetrachloroe	ethene		ND	0.87	0.18	0.871
Chloroethane	ND	1.7	1.6	0.871	Toluene			2.2	0.87	0.45	0.871
Chloroform	ND	0.87	0.21	0.871	1,2,3-Trichlo	orobenzene		ND	1.7	0.80	0.871
Chloromethane	ND	17	0.60	0.871	1,2,4-Trichlo	orobenzene		ND	1.7	0.27	0.871
2-Chlorotoluene	ND	0.87	0.20	0.871	1,1,1-Trichlo			ND	0.87	0.20	0.871
4-Chlorotoluene	ND	0.87	0.19	0.871	1,1,2-Trichlo	oroethane		ND	0.87	0.83	0.871
Dibromochloromethane	ND	1.7	0.50	0.871	1,1,2-Trichlo	oro-1,2,2-Tr	ifluoroethane	ND	8.7	0.31	0.871
1,2-Dibromo-3-Chloropropane	ND	4.4	1.5	0.871	Trichloroeth			ND	1.7	0.26	0.871
1,2-Dibromoethane	ND	0.87	0.22	0.871	Trichlorofluc	romethane		ND	8.7	0.33	0.871
Dibromomethane	ND	0.87	0.67	0.871	1,2,3-Trichlo	propropane		ND	1.7	0.60	0.871
1,2-Dichlorobenzene	ND	0.87	0.20	0.871	1,2,4-Trimet			ND	1.7	0.51	0.871
1,3-Dichlorobenzene	ND	0.87	0.15	0.871	1,3,5-Trimet	hylbenzene		ND	1.7	0.48	0.871
1,4-Dichlorobenzene	ND	0.87	0.19	0.871	Vinyl Acetat			ND	8.7	4.1	0.871
Dichlorodifluoromethane	ND	1.7	0.39	0.871	Vinyl Chloric	le		ND	0.87	0.44	0.871
1,1-Dichloroethane	ND	0.87	0.87	0.871	p/m-Xylene			0.60	1.7	0.23	0.871 J
1,2-Dichloroethane	ND	0.87	0.27	0.871	o-Xylene			ND	0.87	0.48	0.871
1,1-Dichloroethene	ND	0.87	0.30	0.871	Methyl-t-But	yl Ether (M	ΓBE)	ND	1.7	0.26	0.871
c-1,2-Dichloroethene	ND	0.87	0.24	0.871	Tert-Butyl A	Icohol (TBA	.)	ND	17	4.5	0.871
t-1,2-Dichloroethene	ND	0.87	0.44	0.871	Diisopropyl I	Ether (DIPE	.)	ND	0.87	0.42	0.871
1,2-Dichloropropane	ND	0.87	0.38	0.871	Ethyl-t-Butyl		,	ND	0.87	0.44	0.871
1,3-Dichloropropane	ND	0.87	0.22	0.871	Tert-Amyl-M			ND	0.87	0.31	0.871
2,2-Dichloropropane	ND	4.4	0.29	0.871	Ethanol			ND	440	73	0.871
1,1-Dichloropropene	ND	1.7	0.29	0.871							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	107	80-120			Dibromofluo	romethane		97	79-133		
1,2-Dichloroethane-d4	107	71-155			Toluene-d8	. emotiono		105	80-120		
ı,∠-DIUIIIUIUEIIIdIIE-U4	103	11100						105	00-120		

RL - Reporting Limit ,

nM

DF - Dilution Factor , Qual - Qualifiers Return to Contents

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 17 of 69

12/08/11

Parsons, Inc. + \//~ ۱۸/ 100 Pa

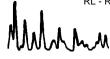

100 West Walnut Stree		Work Order No: 11-12-0606						2-0606			
Pasadena, CA 91124-0		Preparation:						A 5035			
	002				•						
					Method					EPA	8260B
					Units:						ug/kg
Project: DFSP - Norwa	ılk / 74756	65								Page	3 of 15
			Lab Sa	•	Date/Time	Matrix	Instrument	Date		e/Time	QC Batch ID
Client Sample Number			Num	ber	Collected	IVIALITA	manument	Prepar		alyzed	
UVB-2-43			11-12-0	606-3-E	12/08/11 10:00	Solid	GC/MS Z	12/08/1		/09/11 17:26	111209L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the N	/IDL but < RL	, if found, ar	e qualified wi	th a "J" flag	I.		
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u> <u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>
Acetone	7.4	46	5.7	0.916 J	c-1,3-Dichlo	propropene		ND	0.92	0.23	0.916
Benzene	0.23	0.92	0.12	0.916 J	t-1,3-Dichlo	ropropene		ND	1.8	0.55	0.916
Bromobenzene	ND	0.92	0.19	0.916	Ethylbenzer	ne		ND	0.92	0.14	0.916
Bromochloromethane	ND	1.8	0.63	0.916	2-Hexanone	;		ND	18	1.6	0.916
Bromodichloromethane	ND	0.92	0.21	0.916	Isopropylbe	nzene		ND	0.92	0.50	0.916
Bromoform	ND	4.6	0.73	0.916	p-Isopropylt	oluene		ND	0.92	0.58	0.916
Bromomethane	ND	18	8.6	0.916	Methylene (Chloride		4.2	9.2	1.2	0.916J
2-Butanone	ND	18	3.5	0.916	4-Methyl-2-			ND	18	4.0	0.916
n-Butylbenzene	ND	0.92	0.14	0.916	Naphthalen			ND	9.2	0.75	0.916
sec-Butylbenzene	ND	0.92	0.53	0.916	n-Propylber	izene		ND	1.8	0.46	0.916
tert-Butylbenzene	ND	0.92	0.14	0.916	Styrene			ND	0.92	0.55	0.916
Carbon Disulfide	0.33	9.2	0.28	0.916 J	1,1,1,2-Tetr			ND	0.92	0.22	0.916
Carbon Tetrachloride	ND	0.92	0.26	0.916	1,1,2,2-Tetr		ne	ND	1.8	0.32	0.916
Chlorobenzene	ND	0.92	0.21	0.916	Tetrachloro	ethene		ND	0.92	0.19	0.916
Chloroethane	ND	1.8	1.7	0.916	Toluene			ND	0.92	0.47	0.916
Chloroform	ND	0.92	0.22	0.916	1,2,3-Trichl			ND	1.8	0.84	0.916
Chloromethane	ND	18	0.63	0.916	1,2,4-Trichl			ND	1.8	0.28	0.916
2-Chlorotoluene	ND	0.92	0.21	0.916	1,1,1-Trichl			ND	0.92	0.21	0.916
4-Chlorotoluene	ND	0.92	0.20	0.916	1,1,2-Trichl			ND	0.92	0.87	0.916
Dibromochloromethane	ND	1.8	0.52	0.916			fluoroethane		9.2	0.32	0.916
1,2-Dibromo-3-Chloropropane	ND	4.6	1.6	0.916	Trichloroeth			ND	1.8	0.28	0.916
1,2-Dibromoethane	ND	0.92	0.23	0.916	Trichloroflu			ND	9.2	0.34	0.916
Dibromomethane	ND	0.92	0.71	0.916	1,2,3-Trichl			ND	1.8	0.63	0.916
1,2-Dichlorobenzene	ND	0.92	0.21	0.916	1,2,4-Trime			ND	1.8	0.54	0.916
1,3-Dichlorobenzene	ND	0.92	0.16	0.916		thylbenzene		ND	1.8	0.50	0.916
1,4-Dichlorobenzene	ND	0.92	0.20	0.916	Vinyl Aceta			ND	9.2	4.3	0.916
Dichlorodifluoromethane	ND	1.8	0.41	0.916	Vinyl Chlori	de		ND	0.92	0.46	0.916
1,1-Dichloroethane	ND	0.92	0.92	0.916	p/m-Xylene			ND	1.8	0.25	0.916
1,2-Dichloroethane	ND	0.92	0.29	0.916	o-Xylene			ND	0.92	0.51	0.916
1,1-Dichloroethene	ND	0.92	0.32	0.916	Methyl-t-Bu		,	ND	1.8	0.27	0.916
c-1,2-Dichloroethene	ND	0.92	0.26	0.916	Tert-Butyl A	•	,	ND	18	4.7	0.916
t-1,2-Dichloroethene	ND	0.92	0.46	0.916		Ether (DIPE	,	ND	0.92	0.44	0.916
1,2-Dichloropropane	ND	0.92	0.40	0.916	Ethyl-t-Buty	,	,	ND	0.92	0.46	0.916 0.916
1,3-Dichloropropane	ND	0.92	0.23	0.916	Tert-Amyl-N	ietnyi Ether	(TAIVIE)	ND	0.92	0.32	0.916
2,2-Dichloropropane	ND	4.6	0.30	0.916	Ethanol			ND	460	77	0.910
1,1-Dichloropropene	ND	1.8	0.30	0.916	Our man and the				0	~	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	105	80-120			Dibromofluc	oromethane		113	79-133		
1,2-Dichloroethane-d4	103	71-155			Toluene-d8			103	80-120		
,											

n M

Qual - Qualifiers

Return to Contents

12/08/11


JU 18

Parsons, Inc. 100 West Walnut Street Pa

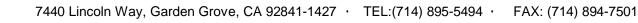
						Bale Received.						
100 West Walnut Stree		Work Order No:						11-12-0606				
Pasadena, CA 91124-0	002						FP/	A 5035				
					Prepara Method:						8260B	
										LFA		
					Units:						ug/kg	
Project: DFSP - Norwa	ılk / 74756	65								Page	4 of 15	
			Lab Sa	mple	Date/Time			Date	Da	te/Time		
Client Sample Number			Num	•	Collected	Matrix	Instrument	Prepar		alyzed	QC Batch ID	
UVB-2-65			11-12-0)606-4-Е	12/08/11 11:00	Solid	GC/MS Z	12/08/1		/09/11 17:55	111209L02	
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the N	/IDL but < RL,	if found, ar	e qualified wi	th a "J" flac	1.			
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> Qual	Parameter			Result	RL	MDL	<u>DF</u> Qual	
Acetone	4.9	38	4.8	0.762 J	c-1,3-Dichlo	ropropene		ND	0.76	0.19	0.762	
Benzene	0.19	0.76	0.099	0.762 J	t-1,3-Dichlor			ND	1.5	0.46	0.762	
Bromobenzene	ND	0.76	0.16	0.762	Ethylbenzen	• •		ND	0.76	0.12	0.762	
Bromochloromethane	ND	1.5	0.53	0.762	2-Hexanone			ND	15	1.3	0.762	
Bromodichloromethane	ND	0.76	0.18	0.762	Isopropylber	zene		ND	0.76	0.42	0.762	
Bromoform	ND	3.8	0.61	0.762	p-Isopropylto			ND	0.76	0.48	0.762	
Bromomethane	ND	15	7.2	0.762	Methylene C			1.4	7.6	1.0	0.762J	
2-Butanone	ND	15	2.9	0.762	4-Methyl-2-F			ND	15	3.3	0.762	
n-Butylbenzene	ND	0.76	0.12	0.762	Naphthalene			ND	7.6	0.62	0.762	
sec-Butylbenzene	ND	0.76	0.44	0.762	n-Propylben			ND	1.5	0.38	0.762	
tert-Butylbenzene	ND	0.76	0.11	0.762	Styrene			ND	0.76	0.46	0.762	
Carbon Disulfide	ND	7.6	0.23	0.762	1,1,1,2-Tetra	achloroetha	ne	ND	0.76	0.18	0.762	
Carbon Tetrachloride	ND	0.76	0.22	0.762	1,1,2,2-Tetra			ND	1.5	0.26	0.762	
Chlorobenzene	ND	0.76	0.17	0.762	Tetrachloroe	thene		ND	0.76	0.16	0.762	
Chloroethane	ND	1.5	1.4	0.762	Toluene			ND	0.76	0.39	0.762	
Chloroform	ND	0.76	0.18	0.762	1,2,3-Trichlo	robenzene		ND	1.5	0.70	0.762	
Chloromethane	ND	15	0.52	0.762	1,2,4-Trichlo			ND	1.5	0.24	0.762	
2-Chlorotoluene	ND	0.76	0.18	0.762	1,1,1-Trichlo			ND	0.76	0.17	0.762	
4-Chlorotoluene	ND	0.76	0.16	0.762	1,1,2-Trichlo	oroethane		ND	0.76	0.72	0.762	
Dibromochloromethane	ND	1.5	0.43	0.762	1,1,2-Trichlo	oro-1,2,2-Tr	ifluoroethane	ND	7.6	0.27	0.762	
1,2-Dibromo-3-Chloropropane	ND	3.8	1.3	0.762	Trichloroeth			ND	1.5	0.23	0.762	
1,2-Dibromoethane	ND	0.76	0.19	0.762	Trichlorofluc	romethane		ND	7.6	0.29	0.762	
Dibromomethane	ND	0.76	0.59	0.762	1,2,3-Trichlo	oropropane		ND	1.5	0.52	0.762	
1,2-Dichlorobenzene	ND	0.76	0.17	0.762	1,2,4-Trimet	hylbenzene		ND	1.5	0.45	0.762	
1,3-Dichlorobenzene	ND	0.76	0.13	0.762	1,3,5-Trimet	hylbenzene		ND	1.5	0.42	0.762	
1,4-Dichlorobenzene	ND	0.76	0.17	0.762	Vinyl Acetate	e		ND	7.6	3.6	0.762	
Dichlorodifluoromethane	ND	1.5	0.34	0.762	Vinyl Chloric	le		ND	0.76	0.38	0.762	
1,1-Dichloroethane	ND	0.76	0.76	0.762	p/m-Xylene			ND	1.5	0.20	0.762	
1,2-Dichloroethane	ND	0.76	0.24	0.762	o-Xylene			ND	0.76	0.42	0.762	
1,1-Dichloroethene	ND	0.76	0.26	0.762	Methyl-t-But	yl Ether (M⁻	ΓBE)	ND	1.5	0.23	0.762	
c-1,2-Dichloroethene	ND	0.76	0.21	0.762	Tert-Butyl A	cohol (TBA)	ND	15	3.9	0.762	
t-1,2-Dichloroethene	ND	0.76	0.39	0.762	Diisopropyl I	Ether (DIPE	.)	ND	0.76	0.37	0.762	
1,2-Dichloropropane	ND	0.76	0.33	0.762	Ethyl-t-Butyl	Ether (ETE	BE)	ND	0.76	0.39	0.762	
1,3-Dichloropropane	ND	0.76	0.19	0.762	Tert-Amyl-M	ethyl Ether	(TAME)	ND	0.76	0.27	0.762	
2,2-Dichloropropane	ND	3.8	0.25	0.762	Ethanol			ND	380	64	0.762	
1,1-Dichloropropene	ND	1.5	0.25	0.762								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
1,4-Bromofluorobenzene	105	80-120			Dibromofluo	romethane		108	79-133			
1,2-Dichloroethane-d4	109	71-155			Toluene-d8			103	80-120			
	103	11 100						100	00 120			

DF - Dilution Factor , RL - Reporting Limit ,

Qual - Qualifiers

Page 19 of 69

12/08/11


Parsons, Inc. 100 West Walnut Street Pa

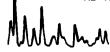
100 West Walnut Stree		Work O		11-12-0606							
Pasadena, CA 91124-0	002				Prepara	tion:				EP/	A 5035
	0002				•						
					Method:					EPA	8260B
					Units:						ug/kg
Project: DFSP - Norwa	alk / 74756	65								Page	5 of 15
Client Sample Number			Lab Sar Numb	•	Date/Time Collected	Matrix	Instrument	Date Prepar		te/Time alyzed	QC Batch ID
									40	2/09/11	
UVB-2-76			11-12-0	606-5-F	12/08/11 11:37	Solid	GC/MS Z	12/08/1		18:25	111209L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ns >= to the N	/IDL but < RL,	if found, ar	e qualified wit	th a "J" flag	j .		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF Qual</u>
Acetone	20	38	4.8	0.767 J	c-1,3-Dichlo	ropropene		ND	0.77	0.20	0.767
Benzene	ND	0.77	0.10	0.767	t-1,3-Dichlor			ND	1.5	0.46	0.767
Bromobenzene	ND	0.77	0.16	0.767	Ethylbenzen	e		ND	0.77	0.12	0.767
Bromochloromethane	ND	1.5	0.53	0.767	2-Hexanone			ND	15	1.4	0.767
Bromodichloromethane	ND	0.77	0.18	0.767	Isopropylber	zene		ND	0.77	0.42	0.767
Bromoform	ND	3.8	0.61	0.767	p-Isopropylto	oluene		ND	0.77	0.48	0.767
Bromomethane	ND	15	7.2	0.767	Methylene C	hloride		ND	7.7	1.0	0.767
2-Butanone	3.4	15	2.9	0.767 J	4-Methyl-2-F	Pentanone		ND	15	3.3	0.767
n-Butylbenzene	ND	0.77	0.12	0.767	Naphthalene			ND	7.7	0.62	0.767
sec-Butylbenzene	ND	0.77	0.44	0.767	n-Propylben			ND	1.5	0.38	0.767
tert-Butylbenzene	ND	0.77	0.12	0.767	Styrene			ND	0.77	0.46	0.767
Carbon Disulfide	ND	7.7	0.23	0.767	1,1,1,2-Tetra	achloroetha	ne	ND	0.77	0.18	0.767
Carbon Tetrachloride	ND	0.77	0.22	0.767	1,1,2,2-Tetra			ND	1.5	0.27	0.767
Chlorobenzene	ND	0.77	0.17	0.767	Tetrachloroe	thene		ND	0.77	0.16	0.767
Chloroethane	ND	1.5	1.4	0.767	Toluene			ND	0.77	0.40	0.767
Chloroform	ND	0.77	0.18	0.767	1,2,3-Trichlo	robenzene		ND	1.5	0.70	0.767
Chloromethane	ND	15	0.53	0.767	1,2,4-Trichk			ND	1.5	0.24	0.767
2-Chlorotoluene	ND	0.77	0.18	0.767	1,1,1-Trichk			ND	0.77	0.17	0.767
4-Chlorotoluene	ND	0.77	0.16	0.767	1,1,2-Trichk			ND	0.77	0.73	0.767
Dibromochloromethane	ND	1.5	0.44	0.767			ifluoroethane		7.7	0.27	0.767
1,2-Dibromo-3-Chloropropane	ND	3.8	1.3	0.767	Trichloroeth			ND	1.5	0.23	0.767
1,2-Dibromoethane	ND	0.0	0.20	0.767	Trichlorofluc			ND	7.7	0.20	0.767
Dibromomethane	ND	0.77	0.59	0.767	1,2,3-Trichk			ND	1.5	0.53	0.767
1,2-Dichlorobenzene	ND	0.77	0.00	0.767	1,2,4-Trimet			ND	1.5	0.45	0.767
1,3-Dichlorobenzene	ND	0.77	0.10	0.767	1,3,5-Trimet	,		ND	1.5	0.40 0.42	0.767
1,4-Dichlorobenzene	ND	0.77	0.17	0.767	Vinyl Acetate			ND	7.7	3.6	0.767
Dichlorodifluoromethane	ND	1.5	0.34	0.767	Vinyl Chlorid			ND	0.77	0.39	0.767
1,1-Dichloroethane	ND	0.77	0.34	0.767	p/m-Xylene			ND	1.5	0.33	0.767
1,2-Dichloroethane	ND	0.77	0.24	0.767	o-Xylene			ND	0.77	0.21	0.767
1,1-Dichloroethene	ND	0.77	0.24	0.767	Methyl-t-But	d Ethor (M		ND	1.5	0.43	0.767
c-1,2-Dichloroethene	ND	0.77	0.21	0.767	Tert-Butyl A			ND		4.0	0.767
,		0.77	0.21	0.767			,		15	4.0 0.37	0.767
t-1,2-Dichloroethene	ND			0.767	Diisopropyl I	•	,	ND	0.77		0.767
1,2-Dichloropropane		0.77	0.34	0.767	Ethyl-t-Butyl				0.77	0.39	0.767
1,3-Dichloropropane		0.77	0.19	0.767	Tert-Amyl-N	eu iyi Eurier			0.77	0.27 64	0.767
2,2-Dichloropropane	ND	3.8	0.25	0.767	Ethanol			ND	380	04	0.707
1,1-Dichloropropene	ND	1.5	0.25		-				_		
Surrogates:	<u>REC (%)</u>		<u>Qual</u>		Surrogates:			<u>REC (%)</u>		<u>Q</u>	ual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	103	80-120			Dibromofluo	romethane		98	79-133		
1,2-Dichloroethane-d4	102	71-155			Toluene-d8			102	80-120		

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers

nM

12/08/11


ACCARE IN ACCORD

Parsons, Inc. 100 West Walnut Street Pa

100 West Walnut Stree		Work Order No: 11 12,000									
		Work Order No: 11-12-0606									
Pasadena, CA 91124-0	002				Prepara	tion:				EP	A 5035
					Method					FPA	8260B
					Units:					,.	ug/kg
		-			Units.					_	
Project: DFSP - Norwa	ilk / 74756	55								Page	6 of 15
			Lab Sar	nple	Date/Time			Date		e/Time	
Client Sample Number			Numb	er	Collected	Matrix	Instrument	Prepar		alyzed	QC Batch ID
UVB-2-72			11-12-0	606-6-G	12/08/11 11:19	Solid	GC/MS Z	12/08/1		/10/11 2:30	111210L01
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ns >= to the M	MDL but < RL,	if found, ar	e qualified wi	th a "J" flag	j .		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF Qual</u>
Acetone	67	43	5.3	0.852	c-1,3-Dichlo	ropropene		ND	0.85	0.22	0.852
Benzene	140	0.85	0.11	0.852	t-1,3-Dichlo	opropene		ND	1.7	0.52	0.852
Bromobenzene	ND	0.85	0.18	0.852	Ethylbenzen	е		23	0.85	0.13	0.852
Bromochloromethane	ND	1.7	0.59	0.852	2-Hexanone			ND	17	1.5	0.852
Bromodichloromethane	ND	0.85	0.20	0.852	Isopropylber	nzene		1.4	0.85	0.47	0.852
Bromoform	ND	4.3	0.68	0.852	p-Isopropylte	oluene		ND	0.85	0.54	0.852
Bromomethane	ND	17	8.0	0.852	Methylene C	hloride		ND	8.5	1.1	0.852
2-Butanone	25	17	3.2	0.852	4-Methyl-2-F	Pentanone		ND	17	3.7	0.852
n-Butylbenzene	0.45	0.85	0.13	0.852 J	Naphthalene		1.8	8.5	0.69	0.852 J	
sec-Butylbenzene	ND	0.85	0.49	0.852	n-Propylben		1.2	1.7	0.43	0.852 J	
tert-Butylbenzene	ND	0.85	0.13	0.852	Styrene			ND	0.85	0.52	0.852
Carbon Disulfide	2.1	8.5	0.26	0.852 J	1,1,1,2-Tetra	achloroetha	ne	ND	0.85	0.20	0.852
Carbon Tetrachloride	ND	0.85	0.24	0.852	1,1,2,2-Tetra	ne	ND	1.7	0.29	0.852	
Chlorobenzene	ND	0.85	0.19	0.852	Tetrachloroe	ethene		ND	0.85	0.18	0.852
Chloroethane	ND	1.7	1.6	0.852	Toluene			130	0.85	0.44	0.852
Chloroform	ND	0.85	0.20	0.852	1,2,3-Trichle	orobenzene		ND	1.7	0.78	0.852
Chloromethane	ND	17	0.59	0.852	1,2,4-Trichle	orobenzene		ND	1.7	0.26	0.852
2-Chlorotoluene	ND	0.85	0.20	0.852	1,1,1-Trichle	oroethane		ND	0.85	0.19	0.852
4-Chlorotoluene	ND	0.85	0.18	0.852	1,1,2-Trichle	proethane		ND	0.85	0.81	0.852
Dibromochloromethane	ND	1.7	0.49	0.852	1,1,2-Trichle	oro-1,2,2-Tr	ifluoroethane	ND	8.5	0.30	0.852
1,2-Dibromo-3-Chloropropane	ND	4.3	1.5	0.852	Trichloroeth	ene		ND	1.7	0.26	0.852
1,2-Dibromoethane	ND	0.85	0.22	0.852	Trichlorofluc	oromethane		ND	8.5	0.32	0.852
Dibromomethane	ND	0.85	0.66	0.852	1,2,3-Trichle	propropane		ND	1.7	0.58	0.852
1,2-Dichlorobenzene	ND	0.85	0.19	0.852	1,2,4-Trimet			3.9	1.7	0.50	0.852
1,3-Dichlorobenzene	ND	0.85	0.15	0.852	1,3,5-Trimet	hylbenzene		0.98	1.7	0.47	0.852 J
1,4-Dichlorobenzene	ND	0.85	0.19	0.852	Vinyl Acetat			ND	8.5	4.0	0.852
Dichlorodifluoromethane	ND	1.7	0.38	0.852	Vinyl Chloric	le		ND	0.85	0.43	0.852
1,1-Dichloroethane	ND	0.85	0.85	0.852	p/m-Xylene			23	1.7	0.23	0.852
1,2-Dichloroethane	ND	0.85	0.27	0.852	o-Xylene			10	0.85	0.47	0.852
1,1-Dichloroethene	ND	0.85	0.29	0.852	Methyl-t-But	yl Ether (M	ГBE)	ND	1.7	0.25	0.852
c-1,2-Dichloroethene	ND	0.85	0.24	0.852	Tert-Butyl A	lcohol (TBA)	ND	17	4.4	0.852
t-1,2-Dichloroethene	ND	0.85	0.43	0.852	Diisopropyl	Ether (DIPE)	ND	0.85	0.41	0.852
1,2-Dichloropropane	ND	0.85	0.37	0.852	Ethyl-t-Butyl	Ether (ETE	BE)	ND	0.85	0.43	0.852
1,3-Dichloropropane	ND	0.85	0.22	0.852	Tert-Amyl-M	lethyl Ether	(TAME)	ND	0.85	0.30	0.852
2,2-Dichloropropane	ND	4.3	0.28	0.852	Ethanol			ND	430	71	0.852
1,1-Dichloropropene	ND	1.7	0.28	0.852							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	69	80-120	2,6		Dibromofluo	romethane		111	79-133		
1,2-Dichloroethane-d4	117	71-155	2,0		Toluene-d8			94	80-120		
1,2-DIGHIOLOEUIANE-04	11/	11-100			roluene-d8			34	00-120		

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 21 of 69

12/08/11

Parsons, Inc. 100 West Walnut Street Ρ

100 West Walnut Stree	1 4					11-12-0606							
Pasadena, CA 91124-0	0002					Prepara	tion:					A 503	
						Method:					EPA	8260I	В
						Units:						ug/k	a
Project: DFSP - Norwa	uk / 74756	35									Page	•	•
Flojeci. Di SF - Norwa	uk / 14130	55									Page		5
Client Sample Number			Lab Sa Numi	•		Date/Time Collected	Matrix	Instrument	Date Prepa		e/Time alyzed	QC Bat	ch ID
UVB-9-24			11-12-0	606-7	-Е	12/08/11 14:05	Solid	GC/MS Z	12/08/		/09/11 9:23	111209	L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >=	to the N	/IDL but < RL,	if found, ar	e qualified wi	th a "J" flag	j.			
Parameter	Result	<u>RL</u>	MDL	DF	Qual	Parameter e			Result	<u>RL</u>	MDL	DF	Qual
Acetone	18	65	8.1	1.3	J	c-1,3-Dichlor	opropene		ND	1.3	0.33	1.3	
Benzene	1.4	1.3	0.17	1.3		t-1,3-Dichlor			ND	2.6	0.79	1.3	
Bromobenzene	ND	1.3	0.27	1.3		Ethylbenzene	e		0.55	1.3	0.20	1.3	J
Bromochloromethane	ND	2.6	0.90	1.3		2-Hexanone			ND	26	2.3	1.3	
Bromodichloromethane	ND	1.3	0.30	1.3		Isopropylben	zene		ND	1.3	0.71	1.3	
Bromoform	ND	6.5	1.0	1.3		p-Isopropylto	luene		ND	1.3	0.82	1.3	
Bromomethane	ND	26	12	1.3		Methylene Cl	hloride		ND	13	1.7	1.3	
2-Butanone	ND	26	4.9	1.3		4-Methyl-2-P	entanone		ND	26	5.6	1.3	
n-Butylbenzene	ND	1.3	0.20	1.3		Naphthalene			ND	13	1.1	1.3	
sec-Butylbenzene	ND	1.3	0.75	1.3		n-Propylbenz	zene		ND	2.6	0.65	1.3	
tert-Butylbenzene	0.23	1.3	0.20	1.3	J	Styrene			ND	1.3	0.79	1.3	
Carbon Disulfide	1.5	13	0.40	1.3	J	1,1,1,2-Tetra	chloroetha	ne	ND	1.3	0.31	1.3	
Carbon Tetrachloride	ND	1.3	0.37	1.3		1,1,2,2-Tetra	chloroetha	ne	ND	2.6	0.45	1.3	
Chlorobenzene	ND	1.3	0.29	1.3		Tetrachloroe	thene		ND	1.3	0.27	1.3	
Chloroethane	ND	2.6	2.4	1.3		Toluene			1.1	1.3	0.67	1.3	J
Chloroform	ND	1.3	0.31	1.3		1,2,3-Trichlo	robenzene		ND	2.6	1.2	1.3	
Chloromethane	ND	26	0.89	1.3		1,2,4-Trichlo	robenzene		ND	2.6	0.40	1.3	
2-Chlorotoluene	ND	1.3	0.30	1.3		1,1,1-Trichlo	roethane		ND	1.3	0.29	1.3	
4-Chlorotoluene	ND	1.3	0.28	1.3		1,1,2-Trichlo	roethane		ND	1.3	1.2	1.3	
Dibromochloromethane	ND	2.6	0.74	1.3		1,1,2-Trichlo	ro-1,2,2-Tr	ifluoroethane	ND	13	0.46	1.3	
1,2-Dibromo-3-Chloropropane	ND	6.5	2.3	1.3		Trichloroethe	ene		ND	2.6	0.39	1.3	
1,2-Dibromoethane	ND	1.3	0.33	1.3		Trichlorofluo	romethane		ND	13	0.49	1.3	
Dibromomethane	ND	1.3	1.0	1.3		1,2,3-Trichlo	ropropane		ND	2.6	0.89	1.3	
1,2-Dichlorobenzene	ND	1.3	0.30	1.3		1,2,4-Trimeth	nylbenzene	•	ND	2.6	0.76	1.3	
1,3-Dichlorobenzene	ND	1.3	0.23	1.3		1,3,5-Trimeth	hylbenzene	•	ND	2.6	0.71	1.3	
1,4-Dichlorobenzene	ND	1.3	0.29	1.3		Vinyl Acetate	9		ND	13	6.2	1.3	
Dichlorodifluoromethane	ND	2.6	0.58	1.3		Vinyl Chlorid	е		ND	1.3	0.65	1.3	
1,1-Dichloroethane	ND	1.3	1.3	1.3		p/m-Xylene			1.3	2.6	0.35	1.3	J
1,2-Dichloroethane	ND	1.3	0.41	1.3		o-Xylene			ND	1.3	0.72	1.3	
1,1-Dichloroethene	ND	1.3	0.45	1.3		Methyl-t-Buty	/I Ether (M	TBE)	ND	2.6	0.38	1.3	
c-1,2-Dichloroethene	ND	1.3	0.36	1.3		Tert-Butyl Al	cohol (TBA)	ND	26	6.7	1.3	
t-1,2-Dichloroethene	ND	1.3	0.66	1.3		Diisopropyl E	ther (DIPE)	ND	1.3	0.63	1.3	
1,2-Dichloropropane	ND	1.3	0.57	1.3		Ethyl-t-Butyl	Ether (ETE	BE)	ND	1.3	0.66	1.3	
1,3-Dichloropropane	ND	1.3	0.33	1.3		Tert-Amyl-M	ethyl Ether	(TAME)	ND	1.3	0.46	1.3	
2,2-Dichloropropane	ND	6.5	0.43	1.3		Ethanol		-	ND	650	110	1.3	
1,1-Dichloropropene	ND	2.6	0.43	1.3									
Surrogates:	<u>REC (%)</u>		<u>Qua</u>	<u>l</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
1,4-Bromofluorobenzene	103	<u>Limits</u> 80-120				Dibromofluor	omethane		121	79-133			
1,2-Dichloroethane-d4	105	71-155				Toluene-d8			106	80-120			
1,2-DICHICHOEUHAHE-04	105	11100				1 UIUEIIE-UO			100	00120			

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers

MM

Page 22 of 69

12/08/11

Parsons, Inc. 10 Pa

100 West Walnut Stree Pasadena, CA 91124-0 Project: DFSP - Norwa	65	Work Order No:11-12-0606Preparation:EPA 5035Method:EPA 8260BUnits:ug/kgPage 8 of 15										
Client Sample Number			Lab Sa Num	•	Date/Time Collected	Matrix	Instrument	Date Prepar	e Dat	e/Time alyzed	QC Bate	
UVB-9-28				0606-8-G	12/08/11 14:16	Solid	GC/MS Z	12/08/	11 12	/09/11 21:50	111209	L01
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentrat	ions >= to the N	/IDL but < RL,	if found, ar	e qualified wi	th a "J" flag	J.			
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	Qual
Acetone	320	2400	300	48.4 J	c-1,3-Dichlo	ropropene		ND	48	12	48.4	
Benzene	91	48	6.3	48.4	t-1,3-Dichlo			ND	97	29	48.4	
Bromobenzene	ND	48	10	48.4	Ethylbenzer	e		510	48	7.3	48.4	
Bromochloromethane	ND	97	33	48.4	2-Hexanone			ND	970	85	48.4	
Bromodichloromethane	ND	48	11	48.4	Isopropylbei	nzene		130	48	26	48.4	
Bromoform	ND	240	38	48.4	p-Isopropylt	oluene		76	48	30	48.4	
Bromomethane	ND	970	460	48.4	Methylene C	hloride		ND	480	65	48.4	
2-Butanone	ND	970	180	48.4	4-Methyl-2-F	Pentanone		ND	970	210	48.4	
n-Butylbenzene	120	48	7.6	48.4	Naphthalene	Э		210	480	39	48.4	J
sec-Butylbenzene	59	48	28	48.4	n-Propylben	zene		200	97	24	48.4	
tert-Butylbenzene	ND	48	7.3	48.4	Styrene			ND	48	29	48.4	
Carbon Disulfide	ND	480	15	48.4	1,1,1,2-Tetr	ne	ND	48	12	48.4		
Carbon Tetrachloride	ND	48	14	48.4	1,1,2,2-Tetr	achloroethai	ne	ND	97	17	48.4	
Chlorobenzene	ND	48	11	48.4	Tetrachloroe	ethene		ND	48	10	48.4	
Chloroethane	ND	97	91	48.4	Toluene			1000	48	25	48.4	
Chloroform	ND	48	12	48.4	1,2,3-Trichle	orobenzene		ND	97	44	48.4	
Chloromethane	ND	970	33	48.4	1,2,4-Trichle	orobenzene		ND	97	15	48.4	
2-Chlorotoluene	ND	48	11	48.4	1,1,1-Trichle	oroethane		ND	48	11	48.4	
4-Chlorotoluene	ND	48	10	48.4	1,1,2-Trichle			ND	48	46	48.4	
Dibromochloromethane	ND	97	28	48.4	1,1,2-Trichle	oro-1,2,2-Tri	fluoroethane	ND	480	17	48.4	
1,2-Dibromo-3-Chloropropane	ND	240	84	48.4	Trichloroeth	ene		ND	97	15	48.4	
1,2-Dibromoethane	ND	48	12	48.4	Trichlorofluc			ND	480	18	48.4	
Dibromomethane	ND	48	37	48.4	1,2,3-Trichle			ND	97	33	48.4	
1,2-Dichlorobenzene	ND	48	11	48.4	1,2,4-Trime	•		920	97	28	48.4	
1,3-Dichlorobenzene	ND	48	8.5	48.4	1,3,5-Trime	•		500	97	27	48.4	
1,4-Dichlorobenzene	ND	48	11	48.4	Vinyl Acetat			ND	480	230	48.4	
Dichlorodifluoromethane	ND	97	21	48.4	Vinyl Chlorid	de		ND	48	24	48.4	
1,1-Dichloroethane	ND	48	48	48.4	p/m-Xylene			2400	97	13	48.4	
1,2-Dichloroethane	ND	48	15	48.4	o-Xylene			740	48	27	48.4	
1,1-Dichloroethene	ND	48	17	48.4	Methyl-t-But			ND	97	14	48.4	
c-1,2-Dichloroethene	ND	48	14	48.4	Tert-Butyl A		,	ND	970	250	48.4	
t-1,2-Dichloroethene	ND	48	24	48.4	Diisopropyl		,	ND	48	23	48.4	
1,2-Dichloropropane	ND	48	21	48.4 48.4	Ethyl-t-Butyl	``	,	ND	48	24	48.4 48.4	
1,3-Dichloropropane	ND	48	12 16	48.4 48.4	Tert-Amyl-M	ietnyi Ether	(TAIVIE)		48	17 4000	48.4 48.4	
2,2-Dichloropropane 1,1-Dichloropropene	ND ND	240 97	16 16	48.4 48.4	Ethanol			ND	24000	4000	40.4	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qu</u>	al	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
1,4-Bromofluorobenzene	109	80-120			Dibromofluc	romethane		107	79-133			
1,2-Dichloroethane-d4	96	71-155			Toluene-d8			108	80-120			

RL - Reporting Limit , DF - Dilution Factor ,

nM

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 ·

Return to Contents

FAX: (714) 894-7501

Page 23 of 69

12/08/11

Parsons, Inc. 100 West Walnut Street Pas

100 West Walnut Stree		Work Order No: 11-12-0606									
Pasadena, CA 91124-0	002				Prepara	tion:				EP	A 5035
					Method:						8260B
										LFA	
					Units:						ug/kg
Project: DFSP - Norwa	lk / 74756	65								Page	9 of 15
			Lab Sar	mple	Date/Time			Date	e Da	te/Time	
Client Sample Number			Numb	ber	Collected	Matrix	Instrument	Prepar	ed Ar	nalyzed	QC Batch ID
UVB-9-61			11-12-0	606-9-E	12/08/11 15:20	Solid	GC/MS Z	12/08/		2/09/11 19:52	111209L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the N	MDL but < RL,	if found, ar	e qualified wit	th a "J" flag	J.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF</u> Qual
Acetone	33	49	6.2	0.986 J	c-1,3-Dichlo	ropropene		ND	0.99	0.25	0.986
Benzene	0.50	0.99	0.13	0.986 J	t-1,3-Dichlor			ND	2.0	0.60	0.986
Bromobenzene	ND	0.99	0.21	0.986	Ethylbenzen	• •		0.21	0.99	0.15	0.986 J
Bromochloromethane	ND	2.0	0.68	0.986	2-Hexanone			ND	20	1.7	0.986
Bromodichloromethane	ND	0.99	0.23	0.986	Isopropylber	nzene		ND	0.99	0.54	0.986
Bromoform	ND	4.9	0.78	0.986	p-Isopropylto			ND	0.99	0.62	0.986
Bromomethane	ND	20	9.3	0.986	Methylene C			ND	9.9	1.3	0.986
2-Butanone	7.3	20	3.7	0.986 J	4-Methyl-2-F			ND	20	4.3	0.986
n-Butylbenzene	ND	0.99	0.15	0.986	Naphthalene			ND	9.9	0.80	0.986
sec-Butylbenzene	ND	0.99	0.57	0.986	n-Propylben			ND	2.0	0.49	0.986
tert-Butylbenzene	ND	0.99	0.15	0.986	Styrene			ND	0.99	0.60	0.986
Carbon Disulfide	0.38	9.9	0.30	0.986 J	1,1,1,2-Tetra	achloroetha	ne	ND	0.99	0.24	0.986
Carbon Tetrachloride	ND	0.99	0.28	0.986	1,1,2,2-Tetra			ND	2.0	0.34	0.986
Chlorobenzene	ND	0.99	0.22	0.986	Tetrachloroe		ND	0.99	0.21	0.986	
Chloroethane	ND	2.0	1.9	0.986	Toluene			0.81	0.99	0.51	0.986J
Chloroform	ND	0.99	0.24	0.986	1,2,3-Trichlo	orobenzene		ND	2.0	0.90	0.986
Chloromethane	ND	20	0.68	0.986	1,2,4-Trichlo			ND	2.0	0.31	0.986
2-Chlorotoluene	ND	0.99	0.23	0.986	1,1,1-Trichlo			ND	0.99	0.22	0.986
4-Chlorotoluene	ND	0.99	0.21	0.986	1,1,2-Trichle			ND	0.99	0.94	0.986
Dibromochloromethane	ND	2.0	0.56	0.986			ifluoroethane		9.9	0.35	0.986
1,2-Dibromo-3-Chloropropane	ND	4.9	1.7	0.986	Trichloroeth			ND	2.0	0.30	0.986
1,2-Dibromoethane	ND	0.99	0.25	0.986	Trichlorofluc			ND	9.9	0.37	0.986
Dibromomethane	ND	0.99	0.76	0.986	1,2,3-Trichle			ND	2.0	0.68	0.986
1,2-Dichlorobenzene	ND	0.99	0.23	0.986	1,2,4-Trimet			ND	2.0	0.58	0.986
1,3-Dichlorobenzene	ND	0.99	0.17	0.986	1,3,5-Trimet			ND	2.0	0.54	0.986
1,4-Dichlorobenzene	ND	0.99	0.22	0.986	Vinyl Acetate			ND	9.9	4.7	0.986
Dichlorodifluoromethane	ND	2.0	0.44	0.986	Vinyl Chlorid			ND	0.99	0.50	0.986
1,1-Dichloroethane	ND	0.99	0.99	0.986	p/m-Xylene			0.67	2.0	0.26	0.986J
1,2-Dichloroethane	ND	0.99	0.31	0.986	o-Xylene			ND	0.99	0.55	0.986
1,1-Dichloroethene	ND	0.99	0.34	0.986	Methyl-t-But	vl Ether (M	(BE)	0.34	2.0	0.29	0.986 J
c-1,2-Dichloroethene	ND	0.99	0.28	0.986	Tert-Butyl A			ND	20	5.1	0.986
t-1,2-Dichloroethene	ND	0.99	0.50	0.986	Diisopropyl I		,	ND	0.99	0.48	0.986
1,2-Dichloropropane	ND	0.99	0.43	0.986	Ethyl-t-Butyl			ND	0.99	0.50	0.986
1,3-Dichloropropane	ND	0.99	0.25	0.986	Tert-Amyl-M	,	,	ND	0.99	0.35	0.986
2,2-Dichloropropane	ND	4.9	0.23	0.986	Ethanol		(., <u>)</u>	ND	490	82	0.986
1,1-Dichloropropene	ND	2.0	0.32	0.986					100	02	
Surrogates:	<u>REC (%)</u>		<u>Qual</u>	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	102	<u>Limits</u> 80-120			Dibromoflue	romother -		110	79-133		
,	102				Dibromofluo	Inemane		119			
1,2-Dichloroethane-d4	102	71-155			Toluene-d8			102	80-120		

DF - Dilution Factor , RL - Reporting Limit ,

hM

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 ·

FAX: (714) 894-7501

Page 24 of 69

12/08/11

Parsons, Inc. 100 Pa

100 West Walnut Stree Pasadena, CA 91124-0	Work Order No:11-12-0606Preparation:EPA 5035										
					Method						8260B
Project: DFSP - Norwa	ılk / 74756	65			Units:				P	ade 1	ug/kg 0 of 15
Client Sample Number			Lab Sar Numb	•	Date/Time Collected	Matrix	Instrument	Date Prepar	e Dat	e/Time alyzed	QC Batch ID
UVB-9-61D				606-10-E	12/08/11 15:20	Solid	GC/MS Z	12/08/	11 12/	/09/11 20:22	111209L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ns >= to the N	/IDL but < RL	, if found, ar	e qualified wit	th a "J" flag	j.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>
Acetone	27	40	5.0	0.804 J	c-1,3-Dichlo	propropene		ND	0.80	0.20	0.804
Benzene	0.42	0.80	0.10	0.804 J	t-1,3-Dichlo			ND	1.6	0.49	0.804
Bromobenzene	ND	0.80	0.17	0.804	Ethylbenzer			0.12	0.80	0.12	0.804 J
Bromochloromethane	ND	1.6	0.56	0.804	2-Hexanone			ND	16	1.4	0.804
Bromodichloromethane	ND	0.80	0 0.19 0.804 Isopropylbenzene						0.80	0.44	0.804
Bromoform	ND	4.0	0 0.64 0.804 p-Isopropyltoluene						0.80	0.51	0.804
Bromomethane	ND	16	7.6	0.804	Methylene (ND ND	8.0	1.1	0.804	
2-Butanone	6.0	16	3.0	0.804 J	4-Methyl-2-		ND	16	3.5	0.804	
n-Butylbenzene	ND	0.80	0.13	0.804	Naphthalen		ND	8.0	0.65	0.804	
sec-Butylbenzene	ND	0.80	0.46	0.804		ND	1.6	0.40	0.804		
tert-Butylbenzene	ND	0.80	0.12	0.804	n-Propylber Styrene			ND	0.80	0.49	0.804
Carbon Disulfide	0.26	8.0							0.80	0.19	0.804
Carbon Tetrachloride	ND	0.80	0.23	0.804	1,1,2,2-Tetr			ND ND	1.6	0.28	0.804
Chlorobenzene	ND	0.80	0.18	0.804	Tetrachloro			ND	0.80	0.17	0.804
Chloroethane	ND	1.6	1.5	0.804	Toluene	etherie		0.62	0.80	0.41	0.804 J
Chloroform	ND	0.80	0.19	0.804	1,2,3-Trichl	orohenzene		0.02 ND	1.6	0.73	0.804
Chloromethane	ND	16	0.55	0.804	1,2,4-Trichl			ND	1.6	0.25	0.804
2-Chlorotoluene	ND	0.80	0.19	0.804	1,1,1-Trichl			ND	0.80	0.20	0.804
4-Chlorotoluene	ND	0.80	0.13	0.804	1,1,2-Trichl			ND	0.80	0.76	0.804
Dibromochloromethane	ND	0.00 1.6	0.17	0.804			fluoroethane		8.0	0.28	0.804
1,2-Dibromo-3-Chloropropane	ND	4.0	0.40 1.4	0.804	Trichloroeth		inuoroeinane	ND	1.6	0.20	0.804
		4.0 0.80	0.21	0.804	Trichloroflu				8.0	0.24	0.804
1,2-Dibromoethane	ND ND	0.80	0.21	0.804				ND ND	8.0 1.6	0.50	0.804
Dibromomethane		0.80	0.02	0.804	1,2,3-Trichl				1.6	0.35	0.804
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	0.80	0.18	0.804	1,2,4-Trime 1,3,5-Trime			ND ND	1.6	0.47	0.804
1,4-Dichlorobenzene	ND	0.80	0.14	0.804	Vinyl Acetat			ND	8.0	0.44 3.8	0.804
Dichlorodifluoromethane	ND	0.80 1.6	0.18	0.804	Vinyl Chlori			ND	0.80	0.40	0.804
1.1-Dichloroethane	ND	0.80	0.30	0.804	p/m-Xylene	ue		0.34	1.6	0.40	0.804 J
1,2-Dichloroethane	ND	0.80	0.80	0.804	o-Xylene			0.34 ND	0.80	0.22	0.804
		0.80	0.25	0.804		hd Ethor (M			0.80 1.6	0.45	0.804 J
1,1-Dichloroethene	ND			0.804	Methyl-t-Bu Tert-Butyl A			0.34			0.804
c-1,2-Dichloroethene	ND	0.80 0.80	0.22 0.41	0.804	,		,	ND	16 0.80	4.2 0.39	0.804
t-1,2-Dichloroethene	ND			0.804		Ether (DIPE		ND			0.804
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	0.80	0.35	0.804	Tert-Amyl-N	l Ether (ETE	,		0.80	0.41 0.28	0.804
		0.80 4.0	0.20 0.27	0.804	Ethanol	neu iyi ⊏uner			0.80 400	0.28 67	0.804
2,2-Dichloropropane 1,1-Dichloropropene	ND ND	4.0 1.6	0.27	0.804				ND	-+00	07	0.004
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	103	80-120			Dibromofluc	romethane		119	79-133		
1,2-Dichloroethane-d4	105	71-155			Toluene-d8			102	80-120		
	100				i oluene-uo			102	00 120		

RL - Reporting Limit ,

nM

DF - Dilution Factor , Qual - Qualifiers Return to Contents

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

12/08/11

Return to Contents

FAX: (714) 894-7501

ACCARO IN ACCORD

Parsons, Inc. 100 West Walnut Street Pa

100 West Walnut Street Work Order N										11 14	
		Work Order No: 11-12-060									
Pasadena, CA 91124-0	0002				Prepara	tion:				EP/	A 5035
					Method					EPA	8260B
					Units:						ug/kg
Drojacti DESD Norwo	112 / 74756	5			O mor				П	1	
Project: DFSP - Norwa	ar / 74750	55							Р	age T	1 of 15
Client Sample Number			Lab Sar Numb	•	Date/Time Collected	Matrix	Instrument	Date Prepar		e/Time alyzed	QC Batch ID
UVB-9-68				606-11-F	12/08/11	Solid	GC/MS Z	12/08/	40	/09/11	111209L02
010-5-00			11-12-0	000-11-1	15:42	5010	60/11/0 2	12/00/		20:52	111203202
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ns >= to the N	MDL but < RL,	if found, ar	e qualified wi	th a "J" flag] .		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF</u> Qual
Acetone	20	39	4.8	0.775J	c-1,3-Dichlo	ropropene		ND	0.78	0.20	0.775
Benzene	0.38	0.78	0.10	0.775J	t-1,3-Dichlo	opropene		ND	1.6	0.47	0.775
Bromobenzene	ND	0.78	0.16	0.775	Ethylbenzer	е		ND	0.78	0.12	0.775
Bromochloromethane	ND	1.6	0.54	0.775	2-Hexanone			ND	16	1.4	0.775
Bromodichloromethane	ND	0.78	0.18	0.775	Isopropylbei	nzene		ND	0.78	0.42	0.775
Bromoform	ND	3.9	0.62	0.775	p-Isopropylt	oluene		ND	0.78	0.49	0.775
Bromomethane	ND	16	7.3	0.775	Methylene C	hloride		ND	7.8	1.0	0.775
2-Butanone	3.7	16	2.9	0.775 J	4-Methyl-2-F		ND	16	3.3	0.775	
n-Butylbenzene	ND	0.78	0.12	0.775	Naphthalene			ND	7.8	0.63	0.775
sec-Butylbenzene	ND	0.78	0.45	0.775	n-Propylben		ND	1.6	0.39	0.775	
tert-Butylbenzene	ND	0.78	0.12	0.775	Styrene		ND	0.78	0.47	0.775	
Carbon Disulfide	1.7	7.8	0.24	0.775 J	1,1,1,2-Tetr	achloroetha	ne	ND	0.78	0.19	0.775
Carbon Tetrachloride	ND	0.78	0.22	0.775	1,1,2,2-Tetr		ND	1.6	0.27	0.775	
Chlorobenzene	ND	0.78	0.17	0.775	Tetrachloroe			ND	0.78	0.16	0.775
Chloroethane	ND	1.6	1.5	0.775	Toluene			ND	0.78	0.40	0.775
Chloroform	ND	0.78	0.19	0.775	1,2,3-Trichle	orobenzene		ND	1.6	0.71	0.775
Chloromethane	ND	16	0.53	0.775	1,2,4-Trichle			ND	1.6	0.24	0.775
2-Chlorotoluene	ND	0.78	0.18	0.775	1,1,1-Trichle			ND	0.78	0.17	0.775
4-Chlorotoluene	ND	0.78	0.17	0.775	1,1,2-Trichle			ND	0.78	0.74	0.775
Dibromochloromethane	ND	1.6	0.44	0.775			ifluoroethane		7.8	0.27	0.775
1,2-Dibromo-3-Chloropropane	ND	3.9	1.3	0.775	Trichloroeth		inderoctriane	ND	1.6	0.23	0.775
1,2-Dibromoethane	ND	0.78	0.20	0.775	Trichloroflug			ND	7.8	0.20	0.775
Dibromomethane	ND	0.78	0.60	0.775	1,2,3-Trichle			ND	1.6	0.53	0.775
1,2-Dichlorobenzene	ND	0.78	0.00	0.775	1,2,4-Trime			ND	1.6	0.35	0.775
1,3-Dichlorobenzene	ND	0.78	0.10	0.775	1,3,5-Trime			ND	1.6	0.43	0.775
1,4-Dichlorobenzene	ND	0.78	0.14	0.775	Vinyl Acetat			ND	7.8	0.40 3.7	0.775
Dichlorodifluoromethane	ND	1.6	0.17	0.775	Vinyl Chlorid			ND	0.78	0.39	0.775
1,1-Dichloroethane	ND	0.78	0.34	0.775	p/m-Xylene	1e		ND	1.6	0.33	0.775
1,2-Dichloroethane		0.78		0.775				ND	0.78	0.21	0.775
	ND	0.78	0.24 0.27	0.775	o-Xylene	ul Ethor (M			1.6	0.43	0.775
1,1-Dichloroethene	ND			0.775	Methyl-t-But			ND			0.775J
c-1,2-Dichloroethene	ND	0.78	0.22	0.775	Tert-Butyl A	•	,	8.0	16	4.0	0.775
t-1,2-Dichloroethene	ND	0.78	0.39		Diisopropyl	``	,		0.78	0.37	0.775
1,2-Dichloropropane	ND	0.78	0.34	0.775 0.775	Ethyl-t-Butyl			ND	0.78	0.39	0.775
1,3-Dichloropropane	ND	0.78	0.20	0.775	Tert-Amyl-M	ieinyi Ether	(TAIVIE)	ND	0.78	0.27	
2,2-Dichloropropane	ND	3.9	0.26	0.775	Ethanol			ND	390	65	0.775
1,1-Dichloropropene	ND	1.6	0.25	0.775	0				. .	-	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	74	80-120	2,6		Dibromofluc	romethane		124	79-133		
1,2-Dichloroethane-d4	111	71-155	_,0		Toluene-d8			98	80-120		
								50	00 120		

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 ·

DF - Dilution Factor , RL - Reporting Limit ,

MM

Qual - Qualifiers

12/08/11

Parsons, Inc. 100 West Walnut Street Pa

100 West Walnut Stree					Work O	rder No:				11-12	2-0606
Pasadena, CA 91124-0	002				Prepara Method:						A 5035 8260B
Drainate DESD Norwa	11 / 71750	SE .			Units:						ug/kg
Project: DFSP - Norwa	IIK / 74750	00			Dete (Time			Data			2 of 15
Client Sample Number			Lab Sai Numb	•	Date/Time Collected	Matrix	Instrument	Date Prepar		e/Time alyzed	QC Batch ID
UVB-9-72			11-12-0	606-12-F	12/08/11 15:52	Solid	GC/MS Z	12/08/ [,]		/09/11 21:21	111209L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the M	MDL but < RL,	if found, ar	e qualified wit	th a "J" flag	J.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>
Acetone	ND	41	5.1	0.816	c-1,3-Dichlo	ropropene		ND	0.82	0.21	0.816
Benzene	0.29	0.82	0.11	0.816 J	t-1,3-Dichlo			ND	1.6	0.49	0.816
Bromobenzene	ND	0.82	0.17	0.816	Ethylbenzen	e		ND	0.82	0.12	0.816
Bromochloromethane	ND	1.6	0.56	0.816	2-Hexanone			ND	16	1.4	0.816
Bromodichloromethane	ND	0.82	0.19	0.816	Isopropylber	nzene		ND	0.82	0.45	0.816
Bromoform	ND	4.1	0.65	0.816	p-Isopropylt	oluene		ND	0.82	0.51	0.816
Bromomethane	ND	16	7.7	0.816	Methylene C	hloride		ND	8.2	1.1	0.816
2-Butanone	ND	16	3.1	0.816	4-Methyl-2-F	Pentanone		ND	16	3.5	0.816
n-Butylbenzene	ND	0.82	0.13	0.816	Naphthalene	9		ND	8.2	0.66	0.816
sec-Butylbenzene	ND	0.82	0.47	0.816	n-Propylben			ND	1.6	0.41	0.816
tert-Butylbenzene	ND	0.82	0.12	0.816	Styrene			ND	0.82	0.49	0.816
Carbon Disulfide	ND	8.2	0.25	0.816	1,1,1,2-Tetra	achloroethai	ne	ND	0.82	0.20	0.816
Carbon Tetrachloride	ND	0.82	0.23	0.816	1,1,2,2-Tetra			ND	1.6	0.28	0.816
Chlorobenzene	ND	0.82	0.18	0.816	Tetrachloroe	ethene		ND	0.82	0.17	0.816
Chloroethane	ND	1.6	1.5	0.816	Toluene			ND	0.82	0.42	0.816
Chloroform	ND	0.82	0.19	0.816	1,2,3-Trichle	orobenzene		ND	1.6	0.75	0.816
Chloromethane	ND	16	0.56	0.816	1,2,4-Trichk			ND	1.6	0.25	0.816
2-Chlorotoluene	ND	0.82	0.19	0.816	1,1,1-Trichle			ND	0.82	0.18	0.816
4-Chlorotoluene	ND	0.82	0.17	0.816	1,1,2-Trichk			ND	0.82	0.78	0.816
Dibromochloromethane	ND	1.6	0.47	0.816			ifluoroethane		8.2	0.29	0.816
1,2-Dibromo-3-Chloropropane	ND	4.1	1.4	0.816	Trichloroeth			ND	1.6	0.25	0.816
1,2-Dibromoethane	ND	0.82	0.21	0.816	Trichlorofluc			ND	8.2	0.31	0.816
Dibromomethane	ND	0.82	0.63	0.816	1,2,3-Trichk			ND	1.6	0.56	0.816
1,2-Dichlorobenzene	ND	0.82	0.19	0.816	1,2,4-Trimet			ND	1.6	0.48	0.816
1,3-Dichlorobenzene	ND	0.82	0.14	0.816	1,3,5-Trimet			ND	1.6	0.45	0.816
1,4-Dichlorobenzene	ND	0.82	0.18	0.816	Vinyl Acetat			ND	8.2	3.9	0.816
Dichlorodifluoromethane	ND	1.6	0.36	0.816	Vinyl Chlorid			ND	0.82	0.41	0.816
1.1-Dichloroethane	ND	0.82	0.82	0.816	p/m-Xylene			ND	1.6	0.22	0.816
1,2-Dichloroethane	ND	0.82	0.26	0.816	o-Xylene			ND	0.82	0.45	0.816
1,1-Dichloroethene	ND	0.82	0.28	0.816	Methyl-t-But	vl Ether (M	FBE)	ND	1.6	0.24	0.816
c-1,2-Dichloroethene	ND	0.82	0.23	0.816	Tert-Butyl A	• •	,	ND	16	4.2	0.816
t-1,2-Dichloroethene	ND	0.82	0.41	0.816	Diisopropyl		,	ND	0.82	0.39	0.816
1,2-Dichloropropane	ND	0.82	0.36	0.816	Ethyl-t-Butyl	``	,	ND	0.82	0.41	0.816
1,3-Dichloropropane	ND	0.82	0.21	0.816	Tert-Amyl-N			ND	0.82	0.29	0.816
2,2-Dichloropropane	ND	4.1	0.27	0.816	Ethanol		、····,	ND	410	68	0.816
1,1-Dichloropropene	ND	1.6	0.27	0.816					-		
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qual	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	105	80-120			Dibromofluo	romethane		113	79-133		
1,2-Dichloroethane-d4	109	71-155			Toluene-d8			104	80-120		
1,2-DIGHIOIOEUIANE-04	109	11100			i oluene-do			104	00-120		

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Page 27 of 69

12/08/11

Parsons, Inc. 100 Pas


100 West Walnut Stree Pasadena, CA 91124-0 Project: DFSP - Norwa	124-0002 Preparation: Method: Units:								D	EP. EPA	2-0600 A 503 8260E ug/kg 3 of 15	5 3 9
			Lab Sa	•	Date/Time	Matrix	Instrument	Date	e Dat	e/Time	QC Bat	
Client Sample Number Method Blank			Numb 095-01-	025-22,380	Collected N/A	Solid	GC/MS Z	Prepar 12/09/*	11 12	alyzed /09/11	111209	
										3:59		
Comment(s): -Results were						, if found, ar	e qualified wi				DE	Qual
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF Qual	Parameter			Result	<u>RL</u>	MDL	DF 100	Qual
Acetone	ND	5000	620	100	c-1,3-Dichle			ND	100	25	100	
Benzene	ND	100	13	100	t-1,3-Dichlo			ND	200	61	100	
Bromobenzene	ND	100	21	100	Ethylbenzer			ND	100	15	100	
Bromochloromethane	ND	200	69	100	2-Hexanone			ND	2000	180	100	
Bromodichloromethane	ND	100	23	100	Isopropylbe			ND	100	55	100	
Bromoform	ND	500	79	100	p-Isopropylt			ND	100	63	100	
Bromomethane	ND	2000	940	100	Methylene (ND	1000	130	100	
2-Butanone	ND	2000	380	100	4-Methyl-2-			ND	2000	430	100	
n-Butylbenzene	ND	100	16	100	Naphthalen			ND	1000	81	100	
sec-Butylbenzene	ND	100	58	100	n-Propylber	izene		ND	200	50	100	
tert-Butylbenzene	ND	100	15	100	Styrene			ND	100	60	100	
Carbon Disulfide	ND	1000	31	100	1,1,1,2-Tetr	achloroetha	ne	ND	100	24	100	
Carbon Tetrachloride	ND	100	28	100	1,1,2,2-Tetr	achloroetha	ne	ND	200	35	100	
Chlorobenzene	ND	100	22	100	Tetrachloro	ethene		ND	100	21	100	
Chloroethane	ND	200	190	100	Toluene			ND	100	52	100	
Chloroform	ND	100	24	100	1,2,3-Trichl	orobenzene		ND	200	91	100	
Chloromethane	ND	2000	69	100	1,2,4-Trichl	orobenzene		ND	200	31	100	
2-Chlorotoluene	ND	100	23	100	1,1,1-Trichl	oroethane		ND	100	23	100	
4-Chlorotoluene	ND	100	21	100	1,1,2-Trichl	oroethane		ND	100	95	100	
Dibromochloromethane	ND	200	57	100	1,1,2-Trichl	oro-1,2,2-Tr	ifluoroethane	ND	1000	35	100	
1,2-Dibromo-3-Chloropropane	ND	500	170	100	Trichloroeth			ND	200	30	100	
1,2-Dibromoethane	ND	100	26	100	Trichloroflu	oromethane		ND	1000	38	100	
Dibromomethane	ND	100	77	100	1,2,3-Trichl			ND	200	69	100	
1,2-Dichlorobenzene	ND	100	23	100	1,2,4-Trime		•	ND	200	59	100	
1,3-Dichlorobenzene	ND	100	18	100	1,3,5-Trime			ND	200	55	100	
1,4-Dichlorobenzene	ND	100	22	100	Vinyl Aceta	-		ND	1000	470	100	
Dichlorodifluoromethane	ND	200	44	100	Vinyl Chlori			ND	100	50	100	
1.1-Dichloroethane	ND	100	100	100	p/m-Xylene			ND	200	27	100	
1,2-Dichloroethane	ND	100	31	100	o-Xylene			ND	100	 56	100	
1,1-Dichloroethene	ND	100	35	100	Methyl-t-Bu	tvl Ether (M	TBF)	ND	200	30	100	
c-1,2-Dichloroethene	ND	100	28	100	Tert-Butyl A			ND	2000	520	100	
t-1,2-Dichloroethene	ND	100	51	100	Diisopropyl		,	ND	100	48	100	
1,2-Dichloropropane	ND	100	44	100	Ethyl-t-Buty			ND	100	51	100	
1,3-Dichloropropane	ND	100	44 25	100	Tert-Amyl-N			ND	100	35	100	
2,2-Dichloropropane	ND	500	33	100	Ethanol		(.,)	ND	50000	8400	100	
1,1-Dichloropropene	ND	200	33	100					50000	0400	100	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qual	<u> </u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
1,4-Bromofluorobenzene	104	80-120			Dibromofluc	promethane		95	79-133			
1,2-Dichloroethane-d4	99	71-155			Toluene-d8			102	80-120			

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

12/08/11

Parsons, Inc. 100 West Walnut Street Pa

100 West Walnut Stree Pasadena, CA 91124-0			Work Order No: Preparation: Method:							EP	2-060 A 503 8260	5	
						Units:						ug/k	-
Project: DFSP - Norwa	lk / 74756	65								Р	Page 14 of 15		
Client Sample Number			Lab Sa Numb	•		Date/Time Collected	Matrix	Instrument	Date Prepar		te/Time alyzed	QC Bat	tch ID
Method Blank			095-01	025-2	2,384	N/A	Solid	GC/MS Z	12/09/ ⁻		/09/11 14:29	111209	9L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >=	to the N	MDL but < RL,	if found, ar	e qualified wi	th a "J" flaç	j .			
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qual	Parameter			Result	<u>RL</u>	MDL	DF	<u>Qual</u>
Acetone	ND	50	6.2	1		c-1,3-Dichlo	propropene		ND	1.0	0.25	1	
Benzene	ND	1.0	0.13	1		t-1,3-Dichlo	ropropene		ND	2.0	0.61	1	
Bromobenzene	ND	1.0	0.21	1		Ethylbenzer	ie		ND	1.0	0.15	1	
Bromochloromethane	ND	2.0	0.69	1		2-Hexanone	•		ND	20	1.8	1	
Bromodichloromethane	ND	1.0	0.23	1		Isopropylbei	nzene		ND	1.0	0.55	1	
Bromoform	ND	5.0	0.79	1		p-Isopropylt	oluene		ND	1.0	0.63	1	
Bromomethane	ND	20	9.4	1		Methylene C	Chloride		ND	10	1.3	1	
2-Butanone	ND	20	3.8	1		4-Methyl-2-I	Pentanone		ND	20	4.3	1	
n-Butylbenzene	ND	1.0	0.16	1		Naphthalene	Э		ND	10	0.81	1	
sec-Butylbenzene	ND	1.0	0.58	1		n-Propylben	zene		ND	2.0	0.50	1	
tert-Butylbenzene	ND	1.0	0.15	1		Styrene			ND	1.0	0.60	1	
Carbon Disulfide	ND	10	0.31	1		1,1,1,2-Tetr	achloroetha	ne	ND	1.0	0.24	1	
Carbon Tetrachloride	ND	1.0	0.28	1		1,1,2,2-Tetr	achloroetha	ne	ND	2.0	0.35	1	
Chlorobenzene	ND	1.0	0.22	1		Tetrachloroe	ethene		ND	1.0	0.21	1	
Chloroethane	ND	2.0	1.9	1		Toluene			ND	1.0	0.52	1	
Chloroform	ND	1.0	0.24	1		1,2,3-Trichle	orobenzene		ND	2.0	0.91	1	
Chloromethane	ND	20	0.69	1		1,2,4-Trichle	orobenzene		ND	2.0	0.31	1	
2-Chlorotoluene	ND	1.0	0.23	1		1,1,1-Trichle	oroethane		ND	1.0	0.23	1	
4-Chlorotoluene	ND	1.0	0.21	1		1,1,2-Trichle	oroethane		ND	1.0	0.95	1	
Dibromochloromethane	ND	2.0	0.57	1				ifluoroethane	ND	10	0.35	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1.7	1		Trichloroeth			ND	2.0	0.30	1	
1,2-Dibromoethane	ND	1.0	0.26	1		Trichloroflug			ND	10	0.38	1	
Dibromomethane	ND	1.0	0.77	1		1,2,3-Trichle			ND	2.0	0.69	1	
1,2-Dichlorobenzene	ND	1.0	0.23	1		1,2,4-Trime			ND	2.0	0.59	1	
1,3-Dichlorobenzene	ND	1.0	0.18	1		1,3,5-Trime	•		ND	2.0	0.55	1	
1,4-Dichlorobenzene	ND	1.0	0.22	1		Vinyl Acetat	•		ND	10	4.7	1	
Dichlorodifluoromethane	ND	2.0	0.44	1		Vinyl Chlorid			ND	1.0	0.50	1	
1,1-Dichloroethane	ND	1.0	1.0	1		p/m-Xylene			ND	2.0	0.27	1	
1,2-Dichloroethane	ND	1.0	0.31	1		o-Xylene			ND	1.0	0.56	1	
1,1-Dichloroethene	ND	1.0	0.35	1		Methyl-t-But	vl Ether (M	FBE)	ND	2.0	0.30	1	
c-1,2-Dichloroethene	ND	1.0	0.28	1		Tert-Butyl A	• •	,	ND	20	5.2	1	
t-1,2-Dichloroethene	ND	1.0	0.51	1		Diisopropyl	``	,	ND	1.0	0.48	1	
1,2-Dichloropropane	ND	1.0	0.44	1		Ethyl-t-Butyl	•	,	ND	1.0	0.51	1	
1,3-Dichloropropane	ND	1.0	0.25	1		Tert-Amyl-N			ND	1.0	0.35	1	
2,2-Dichloropropane	ND	5.0	0.33	1		Ethanol		····· - /	ND	500	84	1	
1,1-Dichloropropene	ND	2.0	0.33	1									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
1,4-Bromofluorobenzene	103	80-120				Dibromofluc	romethane		95	79-133			
1,2-Dichloroethane-d4	98	71-155				Toluene-d8			103	80-120			
	50	11 100							100	00 120			

RL - Reporting Limit ,

```
DF - Dilution Factor ,
                           Qual - Qualifiers
```

MM

12/08/11

Parsons, Inc. 100 West Walnut Street Pa

						Date Re						.,00,1	
100 West Walnut Stree	et					Work O	rder No:				11-1:	2-060	6
Pasadena, CA 91124-0	002					Prepara	tion:				FP.	A 503	5
						•							
						Method					EPA	8260	
						Units:						ug/k	g
Project: DFSP - Norwa	ılk / 74756	65								F	age 1	5 of 1	5
			Lab Sa	mple		Date/Time			Date		te/Time		
Client Sample Number			Num	•		Collected	Matrix	Instrument	Prepa	red Ar	nalyzed	QC Bat	tch ID
Method Blank			095-01	-025-2	2,386	N/A	Solid	GC/MS Z	12/10/		2/10/11 12:00	111210	DL01
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >=	to the N	/IDL but < RL,	if found, ar	e qualified wi	th a "J" flaç	j.			
Parameter_	<u>Result</u>	<u>RL</u>	MDL	DF	Qual	Parameter			Result	<u>RL</u>	MDL	DF	<u>Qual</u>
Acetone	ND	50	6.2	1		c-1,3-Dichlo	ropropene		ND	1.0	0.25	1	
Benzene	ND	1.0	0.13	1		t-1,3-Dichlo	ropropene		ND	2.0	0.61	1	
Bromobenzene	ND	1.0	0.21	1		Ethylbenzen	e		ND	1.0	0.15	1	
Bromochloromethane	ND	2.0	0.69	1		2-Hexanone	1		ND	20	1.8	1	
Bromodichloromethane	ND	1.0	0.23	1		Isopropylber	nzene		ND	1.0	0.55	1	
Bromoform	ND	5.0	0.79	1		p-Isopropylte	oluene		ND	1.0	0.63	1	
Bromomethane	ND	20	9.4	1		Methylene C	hloride		ND	10	1.3	1	
2-Butanone	ND	20	3.8	1		4-Methyl-2-F	Pentanone		ND	20	4.3	1	
n-Butylbenzene	ND	1.0	0.16	1		Naphthalene	9		ND	10	0.81	1	
sec-Butylbenzene	ND	1.0	0.58	1		n-Propylben	zene		ND	2.0	0.50	1	
tert-Butylbenzene	ND	1.0	0.15	1		Styrene			ND	1.0	0.60	1	
Carbon Disulfide	ND	10	0.31	1		1,1,1,2-Tetra	achloroetha	ne	ND	1.0	0.24	1	
Carbon Tetrachloride	ND	1.0	0.28	1		1,1,2,2-Tetra	achloroetha	ne	ND	2.0	0.35	1	
Chlorobenzene	ND	1.0	0.22	1		Tetrachloroe	ethene		ND	1.0	0.21	1	
Chloroethane	ND	2.0	1.9	1		Toluene			ND	1.0	0.52	1	
Chloroform	ND	1.0	0.24	1		1,2,3-Trichle	orobenzene		ND	2.0	0.91	1	
Chloromethane	ND	20	0.69	1		1,2,4-Trichle	orobenzene		ND	2.0	0.31	1	
2-Chlorotoluene	ND	1.0	0.23	1		1,1,1-Trichle	oroethane		ND	1.0	0.23	1	
4-Chlorotoluene	ND	1.0	0.21	1		1,1,2-Trichle	oroethane		ND	1.0	0.95	1	
Dibromochloromethane	ND	2.0	0.57	1		1,1,2-Trichle	oro-1,2,2-Tr	ifluoroethane	ND	10	0.35	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1.7	1		Trichloroeth	ene		ND	2.0	0.30	1	
1,2-Dibromoethane	ND	1.0	0.26	1		Trichlorofluc	oromethane		ND	10	0.38	1	
Dibromomethane	ND	1.0	0.77	1		1,2,3-Trichle	propropane		ND	2.0	0.69	1	
1,2-Dichlorobenzene	ND	1.0	0.23	1		1,2,4-Trimet	thylbenzene	•	ND	2.0	0.59	1	
1,3-Dichlorobenzene	ND	1.0	0.18	1		1,3,5-Trimet	thylbenzene	•	ND	2.0	0.55	1	
1,4-Dichlorobenzene	ND	1.0	0.22	1		Vinyl Acetat	е		ND	10	4.7	1	
Dichlorodifluoromethane	ND	2.0	0.44	1		Vinyl Chloric	de		ND	1.0	0.50	1	
1,1-Dichloroethane	ND	1.0	1.0	1		p/m-Xylene			ND	2.0	0.27	1	
1,2-Dichloroethane	ND	1.0	0.31	1		o-Xylene			ND	1.0	0.56	1	
1,1-Dichloroethene	ND	1.0	0.35	1		Methyl-t-But	yl Ether (M	TBE)	ND	2.0	0.30	1	
c-1,2-Dichloroethene	ND	1.0	0.28	1		Tert-Butyl A	Icohol (TBA	()	ND	20	5.2	1	
t-1,2-Dichloroethene	ND	1.0	0.51	1		Diisopropyl	Ether (DIPE)	ND	1.0	0.48	1	
1,2-Dichloropropane	ND	1.0	0.44	1		Ethyl-t-Butyl	Ether (ETE	BE)	ND	1.0	0.51	1	
1,3-Dichloropropane	ND	1.0	0.25	1		Tert-Amyl-N	lethyl Ether	(TAME)	ND	1.0	0.35	1	
2,2-Dichloropropane	ND	5.0	0.33	1		Ethanol			ND	500	84	1	
1,1-Dichloropropene	ND	2.0	0.33	1									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
1,4-Bromofluorobenzene	103	80-120				Dibromofluo	romethane		100	79-133			
1,2-Dichloroethane-d4	99	71-155				Toluene-d8	. emetadore		100	80-120			
ı,∠-DIUIIIUIUEIIIdIIE-U4	33	11-100				i oluene-do			102	00-120			

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

nM

Parsons, Inc. 100 West Walnut Street	Date Received: Work Order No:	12/08/11 11-12-0606
Pasadena, CA 91124-0002	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrumen		Tiepaled			ISD Batch umber
UVB-2-30	Solid	Solid GC 48		12/12/11		111	212S12
Parameter	SPIKE ADDED	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Diesel	400.0	87	92	64-130	6	0-15	

Return to Contents

RPD - Relative Percent Difference, CL - Control Limit

hM

Parsons, Inc. 100 West Walnut Street	Date Received: Work Order No:	12/08/11 11-12-0606
Pasadena, CA 91124-0002	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrumen	t Pre	Tiepaied		N	ISD Batch umber
UVB-2-30	Solid	GC 48	12/1	2/11	12/12/11	111	212S13
Parameter	SPIKE ADDED	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as JP5	400.0	99	95	64-130	4	0-15	

RPD - Relative Percent Difference, CL - Control Limit

hM

Parsons, Inc.	Date Received:	N/A
100 West Walnut Street	Work Order No:	11-12-0606
Pasadena, CA 91124-0002	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	l	LCS/LCSD Batch Number	
099-12-275-4,300	Solid	GC 48	12/12/11	12/12/11		111212B12	
Parameter	<u>SPIKE AE</u>	DED LCS %REC	LCSD %REC	<u>%REC CL</u>	RPD	RPD CL	<u>Qualifiers</u>
TPH as Diesel	400.0) 89	84	75-123	7	0-12	

RPD - Relative Percent Difference, CL - Control Limit

hm

Parsons, Inc.	Date Received:	N/A
100 West Walnut Street	Work Order No:	11-12-0606
Pasadena, CA 91124-0002	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Quality Control Sample ID	Matrix		Date Prepared	Date Analyzed	1	LCS/LCSD Batch Number	
099-12-295-86	Solid	GC 48	12/12/11	12/12/11		111212B13	
Parameter	SPIKE AL	DDED LCS %REC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as JP5	400.0	0 102	97	75-123	5	0-12	

RPD - Relative Percent Difference, CL - Control Limit

hm

Parsons, Inc.	Date Received:	N/A
100 West Walnut Street	Work Order No:	11-12-0606
Pasadena, CA 91124-0002	Preparation:	EPA 5035
	Method:	EPA 8015B (M)

Quality Control Sample ID 099-12-285-4.008	Matrix Solid	Instrument GC 18	Date Prepared 12/09/11	Date Analyzec 12/10/11	<u> </u>	LCS/LCSD Batch Number 111209B02	
	Cond			12/10/11			
Parameter	<u>SPIKE AD</u>	DED LCS %REC	LCSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	2.000) 97	95	55-139	1	0-18	

RPD - Relative Percent Difference, CL - Control Limit

hm

Parsons, Inc.	Date Received:	N/A
100 West Walnut Street	Work Order No:	11-12-0606
Pasadena, CA 91124-0002	Preparation:	EPA 5035
	Method:	EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	1	LCS/LCSD Batch Number	
099-12-285-4,009	Solid	GC 18	12/12/11	12/12/11		111212B01	
Parameter	SPIKE AD	DDED_LCS %REC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	2.000	98	98	55-139	0	0-18	

RPD - Relative Percent Difference, CL - Control Limit

hm

N/A

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: 11-12-0606 Work Order No: Preparation: EPA 5035 Method: EPA 8260B

Project: DFSP - Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared)ate alyzed	LCS		
095-01-025-22,380	Solid	Solid GC/MS Z 12/09/11		1 12/0	9/11	1	11209L01	
Parameter	SPIKE ADDE	D LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	50.00	109	108	80-120	73-127	1	0-20	
Carbon Tetrachloride	50.00	123	122	65-137	53-149	1	0-20	
Chlorobenzene	50.00	94	93	80-120	73-127	0	0-20	
1,2-Dibromoethane	50.00	92	95	80-120	73-127	4	0-20	
1,2-Dichlorobenzene	50.00	85	86	80-120	73-127	1	0-20	
1,2-Dichloroethane	50.00	115	115	80-120	73-127	0	0-20	
1,1-Dichloroethene	50.00	116	116	68-128	58-138	0	0-20	
Ethylbenzene	50.00	90	89	80-120	73-127	1	0-20	
Toluene	50.00	107	106	80-120	73-127	1	0-20	
Trichloroethene	50.00	109	110	80-120	73-127	1	0-20	
Vinyl Chloride	50.00	114	116	67-127	57-137	2	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	110	112	70-124	61-133	2	0-20	
Tert-Butyl Alcohol (TBA)	250.0	90	86	73-121	65-129	4	0-20	
Diisopropyl Ether (DIPE)	50.00	110	110	69-129	59-139	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	109	109	70-124	61-133	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	106	106	74-122	66-130	0	0-20	
Ethanol	500.0	100	94	51-135	37-149	6	0-27	

Total number of LCS compounds: 17 Total number of ME compounds : 0 Total number of ME compounds allowed : LCS ME CL validation result : Pass

> RPD - Relative Percent Difference, CL - Control Limit

1

r M

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received:N/AWork Order No:11-12-0606Preparation:EPA 5035Method:EPA 8260B

Project: DFSP - Norwalk / 747565

Quality Control Sample ID	Matrix Instrument		Date Prepared		Date Analyzed		LCS/LCSD Batch Number		
095-01-025-22,384	Solid GC		12/09/1	1 12/0	12/09/11		111209L02		
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	50.00	109	108	80-120	73-127	1	0-20		
Carbon Tetrachloride	50.00	123	122	65-137	53-149	1	0-20		
Chlorobenzene	50.00	94	93	80-120	73-127	0	0-20		
1,2-Dibromoethane	50.00	92	95	80-120	73-127	4	0-20		
1,2-Dichlorobenzene	50.00	85	86	80-120	73-127	1	0-20		
1,2-Dichloroethane	50.00	115	115	80-120	73-127	0	0-20		
1,1-Dichloroethene	50.00	116	116	68-128	58-138	0	0-20		
Ethylbenzene	50.00	90	89	80-120	73-127	1	0-20		
Toluene	50.00	107	106	80-120	73-127	1	0-20		
Trichloroethene	50.00	109	110	80-120	73-127	1	0-20		
Vinyl Chloride	50.00	114	116	67-127	57-137	2	0-20		
Methyl-t-Butyl Ether (MTBE)	50.00	110	112	70-124	61-133	2	0-20		
Tert-Butyl Alcohol (TBA)	250.0	90	86	73-121	65-129	4	0-20		
Diisopropyl Ether (DIPE)	50.00	110	110	69-129	59-139	0	0-20		
Ethyl-t-Butyl Ether (ETBE)	50.00	109	109	70-124	61-133	0	0-20		
Tert-Amyl-Methyl Ether (TAME)	50.00	106	106	74-122	66-130	0	0-20		
Ethanol	500.0	100	94	51-135	37-149	6	0-27		

Total number of LCS compounds :17Total number of ME compounds :0Total number of ME compounds allowed :LCS ME CL validation result :Pass

RPD - Relative Percent Difference, CL - Control Limit

1

Mulhan

N/A

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: 11-12-0606 Preparation: EPA 5035 Method: EPA 8260B

Project: DFSP - Norwalk / 747565

Quality Control Sample ID	Matrix Instrument		Date Prepared)ate alyzed	LCS		
095-01-025-22,386	Solid	GC/MS Z	12/10/1 ⁻	2/10/11 12/10/11		111210L01		
Parameter	SPIKE ADDE	D LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	50.00	105	112	80-120	73-127	7	0-20	
Carbon Tetrachloride	50.00	119	128	65-137	53-149	7	0-20	
Chlorobenzene	50.00	89	94	80-120	73-127	6	0-20	
1,2-Dibromoethane	50.00	89	96	80-120	73-127	7	0-20	
1,2-Dichlorobenzene	50.00	82	86	80-120	73-127	4	0-20	
1,2-Dichloroethane	50.00	113	120	80-120	73-127	7	0-20	
1,1-Dichloroethene	50.00	111	120	68-128	58-138	7	0-20	
Ethylbenzene	50.00	85	90	80-120	73-127	6	0-20	
Toluene	50.00	103	110	80-120	73-127	6	0-20	
Trichloroethene	50.00	105	112	80-120	73-127	6	0-20	
Vinyl Chloride	50.00	109	113	67-127	57-137	4	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	107	116	70-124	61-133	8	0-20	
Tert-Butyl Alcohol (TBA)	250.0	84	89	73-121	65-129	6	0-20	
Diisopropyl Ether (DIPE)	50.00	105	113	69-129	59-139	8	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	105	113	70-124	61-133	7	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	103	109	74-122	66-130	6	0-20	
Ethanol	500.0	94	100	51-135	37-149	7	0-27	

Total number of LCS compounds: 17 Total number of ME compounds : 0 Total number of ME compounds allowed : LCS ME CL validation result : Pass

> RPD - Relative Percent Difference, CL - Control Limit

1

r M

hhu

Glossary of Terms and Qualifiers

Work Order Number: 11-12-0606

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution.
	Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
4	and, therefore, the sample data was reported without further clarification. The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
4	was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
-	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel
	standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of
HDL	the specified standard but heavier hydrocarbons were also present (or detected). The sample chromatographic pattern for TPH matches the chromatographic pattern of
TIDL	the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the
·	laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit
	range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
80	greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not
	corrected for % moisture. All QC results are reported on a wet weight basis.
	MPN - Most Probable Number

	(FP) h	halz	THA WIG	T Dian ma	JHN						x				ļ	Page	e 40	of 6	9
CHAIN OF CUSTODY RECORD Date 12/8/11 Page 1 of 2	KINULDRUJ QUUN		1201 1010 1010 1210 1011 1210 101	1717 1	AND SALL					XXX						مرکا	Time: &: 3 0	ë	06/01/10 Revision
	RINT)			H (g) [TO-3]												Time	ц Щ	Time:	06/
		6		31-0T) 10 (A41-0T) 20												1. ¹ . 1	-		
= CUS	NPLEF	S E E		[9.812 to 9617 to 9617												\sim	10	Ļ	
DF (<u>Z</u> §	L L		(X747/0108) sla								_	_			Date:	Date:	Date:	
/ NO	i d			(100 ct (8270)	8) 2809 												ă 	ă —	-
CHA Date	e N			(1808) se															
	14756	REQUESTED			SUOCS														
	-	Ш С	32)	/ Terra Core Prep (50															
	¥	ВЩ		(0928) səte		×	X	×	X	X	X	X	x	X					
WO # / LAB USE ONLY	NYSK NOLWALK ROJECT CONTACT: MARCHART:	<u>ମ</u> ୍ଚ 🕰	1.17 1.17 1.17	3260)	3) sOOV	メ	X	×	×	<u>^</u> ד	X	x	オ	X	X				
TINAM	ACT A	-UCAS	(MTBE (8260) or (BTEX / I												6		ely.
3 USE SOJEC	PROJECT CONTACT:	-	(585	<u>Het</u>	×	X	X	x	X	X	X	×	×	X	<u></u>	î Ś		pectiv
		MANNA	r (C6-C44)	or DRO or (C6-C36) o		X	X	X	R	X	×	8	X	X	×	Loi)	Nffiliation)	ffiliatio	es res
WO #	Z Par s			or GRO	(D) HdI	D×	×	*	×	X	×	R	*	X		<u> </u>		ure/A	w copi
<u>ບ</u>				ltered	Field Fi											Received by: (Signature/A	Received by: (Signatured	Received by: (Signature/Affiliation	l Yello
	ZID	2	CODE	pə/	Preser											à.) :yd	by: (;	en and
		72	LOG CODE	еглед	Nupres											₽H	ceived	ceived	e Gree
er cle, S 8577		2			NO. OF. CONT.	8	S	∞	\sim	6	i	60	201	8	8	ц В С	Re Re	Re	L le of th
Cent 4520-10			ARD									50							se sìd
ab ervice mmerce - CA 9-		SUCK	ZSTANDARD		MATRIX	Z	R	ઝ	R	R	8	<u>v</u>	Ŗ	R	20				e revel
<pre>Intal Laboratories NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022</pre>	STATE	US & DATE-SAS, COM	H H		ING TIME	0853	002J	1000	00//	1137	1119	Sapl	リリレ	1520	1520				d Yellow to Clie e printed on th
۳ ۳		10.05]72 HR		SAMPLING	11	110	211	211	í/	10	2011	11	2011	110				en and /Cs ar
OU		1.14			DATE	18 /2011	1102/2/2/21	12-8-2011	12011	1201	A	812	122/8	12	1201		£		rt, Gre f our T
2841-	1	E-MAIL: NACANA	48 HR			12/3	12	12-8	k/c/	24	12	121	2/21	12/1	12/2		μ,		al repo of 2 o
	E.	P ^A														00	Þ	t	ith fins and 2
Calscience Environmental Laboratories, Inc. E Socal Laboratory NorCal Service Center E M Socal Laboratory Socal Laboratory E M Socal Laboratory Socal Cancel (Calson) E M Socal Laboratory Socal Calson E M Socal Laboratory NorCal Service Center A440 Lincoln Way Concord, CA 9441-1427 Socard, CA 94520-8577 LABORATORY CLIENT: M CONC	160 W.	raéadena ~440-lars2	TURNAROUND TIME: SAME DAY 24 HR C COELT EDF GLOBAL ID	SPECIAL INSTRUCTIONS:	SAMPLE ID	UVB-2-11	111.1.2-20	WR-2-43	UVB-2-65	WB-2-76	WB-2-72	WB-9-24	142-9-28	14-9-61	11B-9-61D	Relinquished by: (Signature)	Relinquished by (Signature)	Relinquished by: (Signature)	DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.
LABORA	ADDRESS			BECIA	LAB USE ONLY	1 2	4	1/2	10	5 4	0	4	5	0	10 [Reling	Reling	Reling	
	<u></u>	<u>[]</u>		ι σ	1 - 2 2	<u> </u>					- AND					LL-	<u> "</u>	<u> </u>	
											\$								

									70	ΗN	Ą	×					Pag	je 41	of 6	9
۵			Τ-	-7				3215	2ml	PART		X] ह
OR				nerc				- Jim	Rus	POR		X						0		Revisi
й			2-10	à	KI	151	HAR I	- Arad	7+6	hng		x		 			r –	1 ñ		06/01/10 Revision
R		11	YE	2		~ 1	· N	<u>a E</u> -3]	OT] (9) H	19T - 1iA 2 1 U M				 					Time:	06/01
á	2	11	DRII)	Ž			(31-OT) 10 (A4						 			-	-		-
STC	of		LIN (S)	J	ູ			[9.812 ro 991									11	12	-	
D C	11	D. NO.	SAMPLE	x	SE)103) els					 			-1-2]	
CHAIN OF CUSTODY RECORD	2	a:	5	\leq	ANALYSES				.310) or (Date:	Date:	Date:	
Z	20	A I			N			(0208		B) \$804				 _			<u> </u>			-
ĂHX	Date	2							(1808) se					 -			-			
0					STED			(_			
			V		IES					SVOCs				 _						
	Ø	BER:	KK	v d	REQUE		(98	Core Prep (50)				<u> </u>		 			_	しょう		
	Ø	MUN	3	Ľ	RE			(0)	928) səte		ブ	X		 			_			
		CLIENT PROJECT NAME / NUMBER		P						NOCs (8	×	×							,	
		CT N	ONTACT	í l		(8) 38TN					 	 		_ \	7		ively.
		ROJE	χĘ	Ś		(SI		ブ	<u> </u>		 			_ Eq			spect
	WO # / LAB USE ONLY	ENTF		$\Lambda \rho$		(†	·tO-90).	or (C6-C36) or			ブ	×		 					Utiliat	ies re
	N N □	7 7	PROJ	Ŋ			-		or GRO	(6) HAT	1	×					ture//		ture/P	N COD
lnc.				1					ltered	Field Fi							Received by: (Signature/Affiliation)	Received by: (Signature/Affiliation	Received by: (Signature/Affiliation)	DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.
				ZIP Z	ړ `)	LOG CODE		pə/	Preser							by: (<u>ä</u>	by: (an and
es	NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022			\mathcal{P}_{II}	; G		000		рэлэ	Onpres							Leived		eived	Gree
<u>n</u>	r de, Su 577			•	2					с щ É		~					-Rec	Rec	Rec	of the
rat	Center Il Circ 520-8				ba	- a				NO. CONT.	0	0,	•	 		· ·	_			e side
00	vice C hercia A 945 022				0	STANDARD				MATRIX	20	R								everse
<u>a</u>	NorCal Service 5063 Commerc Concord, CA 94 (925) 689-9022				L'	STA														Client.
8	lorCa 063 (conco 925) (STATE	je-					TIME	12	SS SS								w to (
nt				Se l		ъ				1	151	Σ								Yello
Me					/	72 HR				SAMPLING		7						4		n and Cs are
Ē	27				イト					S/ DATE	-11	21								Gree Dur T/
/ir	41-14		¥		2	뷳					8-2	121	~				2	PX	7	eport, 2 of 6
É	A 928		Invit		E-MAIL:	48 HR				<u> </u>	1/1		•	 	 	•		ĮĘ.	φ	final r d 2 of
С С	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494	R DNS	l'h		5		Ę										100	Į.	5	with 1 an
0 u	SoCal Laborato 7440 Lincoln W Garden Grove, (714) 895-5494	لم لر			N N	24 HR	iLOB/					2					Me		e 1	White
Sie Oile	0Cal 1 40 Li arden 14) 8	3	<u> </u>	6	13	5		Ň		SAMPLE ID	8	\vec{U}	•				jnatu	Inatu	Tatu	rion:
<u>s</u>	90,20 U	LIENT	·	2	Ó	TIME	ш	JCTIO		SAM	12-9-(2)	9	•				/: (Sig	/: (Sig	/: (Sig	RBU.
Calscience Environmental Laboratories,	L)	RY C	Ę	J.	うかっ	ROUND T AE DAY	TED	ISTRU			a a	UB-9-7					ied by	led by	ed by	DIST
		LABORATORY CLIENT	RESS:	Q2		RNAROUND	COELT EDF	SPECIAL INSTRUCTIONS			11	14	5				Relinquished by: (Signature)	Relinquished by: (Signatule)	Relinquished by: (Sighature)	
		LABC	ADDRESS	CITY	TEL:	TURNA SAN		SPEC		LAB USE ONLY	11	と					Relir	Relir	Relir	
	÷										- A A A A A A A A A A A A A A A A A A A		- iditention		 					

Please note that pages

				Page	e 42 of 69
Environmental	WOI	RK ORDER #:	11-12	2-06	06
Laboratories, Inc.	MPLE REC	EIPT FOR	RM d	Cooler (of ²
CLIENT: Parsons	· · · · · · · · · · · · · · · · · · ·			12/	
TEMPERATURE: Thermometer ID	: SC3 (Criteria: 0.0 °C	– 6.0 °C, not frozer	n)		
	D.3°C (CF) =(•	🗌 Sampl	e
□ Sample(s) outside temperature cri					3
□ Sample(s) outside temperature cri			av of sampli	na	
□ Received at ambient temperatu			-	ng.	
	∃ Filter	r transport by CO	uner.	Initia	. Ty
				mitta	·
CUSTODY SEALS INTACT:					
□ Cooler □	□ No (Not Intact)	Z Not Present	□ N/A	Initia	1: Ff
□ Sample □	□ No (Not Intact)	☑ Not Present		Initia	1: WB
SAMPLE CONDITION:			Yes	No	N/A
Chain-Of-Custody (COC) document	(s) received with sam	ples			
COC document(s) received complet	e				
Collection date/time, matrix, and/or # o	of containers logged in ba	sed on sample labels.			
☐ No analysis requested. □ Not relir	nquished.	ime relinquished.	<i>_</i> ,		
Sampler's name indicated on COC					
Sample container label(s) consisten	t with COC				
Sample container(s) intact and good	condition				
Proper containers and sufficient volu	ime for analyses req	uested			
Analyses received within holding tim	e		2		
pH / Res. Chlorine / Diss. Sulfide / D	oiss. Oxygen receive	d within 24 hours	. □ /		
Proper preservation noted on COC	or sample container.				
\Box Unpreserved vials received for Vol	atiles analysis				/
Volatile analysis container(s) free of	•				
Tedlar bag(s) free of condensation CONTAINER TYPE:	/		/		
Solid: □4ozCGJ □8ozCGJ □16	ozCGJ ØSleeve (_	<u>ら</u>) □EnCores	s [®] ⊿Terra	Cores® 🗹	80mil 19
Water: VOA VOAh VOAna ₂	□125AGB □125A	GBh □125AGBp	□1AGB [⊒1AGB na₂	□1AGB s
□500AGB □500AGJ □500AGJs	□250AGB □2500	CGB □250CGB s	□1PB [□1PB na □]500PB
□250PB □250PB n □125PB □12	25PB znna □100PJ	□100PJ na₂ □	□	□	
Air: □Tedlar [®] □Summa [®] Other Container: C: Clear A: Amber P: Plastic G: G Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na:	ass J: Jar B: Bottle Z: Zip	loc/Resealable Bag E: I	Envelope F	Reviewed by	: POP

		Page 4	3 of 69
Calscience · WORK ORDER #:	11-12	2-06	06
Laboratories, Inc.			
SAMPLE RECEIPT FOR		Cooler	of 2
CLIENT: Parsons	DATE:	12/8	/11
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not frozen	•		
Temperature $2 \cdot 3 \circ C - 0.3 \circ C (CF) = 2 \cdot 0 \circ C / Z$	•	□ Sample	
□ Sample(s) outside temperature criteria (PM/APM contacted by:).			
\square Sample(s) outside temperature criteria but received on ice/chilled on same da		ng.	
Received at ambient temperature, placed on ice for transport by Co	urier.		
Ambient Temperature: Air Filter		Initial: _	TY
CUSTODY SEALS INTACT: □ Cooler □ □ Cooler □ □ No (Not Intact) Ø Not Present		Initial:	Tr
	□ N/A	Initial:	. ^
□ Sample □ □ No (Not Intact) ☑ Not Present			<u></u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
□ No analysis requested. □ Not relinquished. □ No date/time relinquished.			
Sampler's name indicated on COC.		Π	
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time			
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours			
Proper preservation noted on COC or sample container			
□ Unpreserved vials received for Volatiles analysis			_
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation			
CONTAINER TYPE:		~	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve (<u></u>) □EnCores	s [®] Interration	Cores® 28	OMIL PJ
Water: UOA UOAh UOAna ₂ 125AGB 125AGBh 125AGBp		∃1AGB na₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB [□1PB na □5	00PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □	□	□	
Air: □ Tedlar [®] □ Summa [®] Other: □ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: H Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +N	Envelope F	Reviewed by:	A

/

SOP T100_090 (12/06/11)

Return to Contents

Subcontractor Analysis Report

Work Order # 11-12-0606

One or more samples in this Work Order have tests that were subcontracted. The subcontract report(s) follows.

For subcontracted tests, please reference the laboratory information noted below.

- 1 Core Laboratories Bakersfield,CA ISO 9001:2000, CERT-0014993, ELAP CA # 1247 Geotechnical Testing
- 2 DPRA/Zymax Forensics Escondido,CA Deuterium

Petroleum Services Division 69 3437 Landco Dr. Bakersfield, California 93308 Tel: 661-325-5657 Fax: 661-325-5808 www.corelab.com

January 4, 2012

Virendra Patel CalScience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92641-1432

Re: Physical Properties Analyses Project: 11-12-0606 CL File No: 411088EN

Dear Mr. Patel:

Attached are final results for the samples submitted from your Project # 11-12-0606. This electronic version of the report will constitute the final report unless otherwise instructed.

Appropriate ASTM, EPA or API methodologies were used for this project and SOP's are available on request. The sample was used up during the course of the testing.

We appreciate the opportunity to be of service to Calscience Environmental Laboratories, Inc. and trust these data will prove beneficial in the development of this project. Please do not hesitate to contact us (661-325-5657) if you have any questions regarding these results, or if we can be of any additional service.

Sincerely, Core Laboratories

my I Smith

Jeffry L. Smith ARP Supervisor

Encl.

PORE FLUID SATURATION DATA

Company: Calscience Project No: 11-12-0606 PETROLEUM SERVICES

Core Lab File No: 411088EN

		METHODS:	API RP 40 / ASTM D2216				API RP 40			
		Sample	Moisture	Densit	ty g/cc	Porosity	, %Vb (2)	Pore Flui	d Saturations,	% Pv (3)
Sample ID.	Depth ft.	Orientation (1)	Content, %	Dry Bulk	Grain	Total	Air-Filled	Air (Void)	Hydrocarbon	Water
UVB-2-76	76	V	6.28	1.82	2.74	33.40	21.81	65.30	2.25	32.45
UVB-9-72	72	V	9.58	1.86	2.73	31.76	13.72	43.20	3.48	53.32

(1) Sample Orientation: H = horizontal; V = vertical

(2) Total Porosity = All interconnected pore channels; Air Filled = pore channels not occupied by pore fluids

(3) Water = 0.9996 g/cc, Hydrocarbon = 0.80 g/cc;

Vb = Bulk Volume, cc; Pv = Pore Volume, cc; ND = Not Detected

SIEVE and LASER PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

Petroleum Services

Calscience Environmental Laboratories, Inc. Proj. No. : 11-12-0606

Core Lab File No : 57111-411088EN Date : 1/4/2012

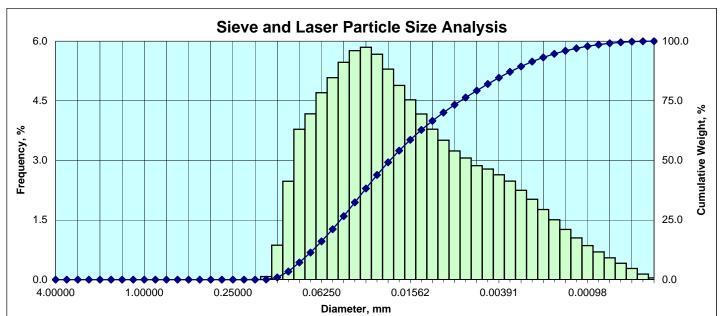
	Grain Size	Median			(Component F	Percentage	S			Silt
	Description	Grain Size,				Sand Size					&
Sample ID	(Mean from Folk)	mm	Gravel	VCoarse	Coarse	Medium	Fine	VFine	Silt	Clay	Clay
UVB-2-76	silt	0.02	0.00	0.00	0.00	2.22	10.23	16.41	54.09	17.05	71.1
UVB-9-72	silt	0.02	0.00	0.00	0.00	0.00	0.95	15.14	68.59	15.32	83.9

Comp. : Calscience Environmental Laboratories, Inc. Proj. No. : 11-12-0606


Sieve and Laser Particle Size Analysis (Metric)

Sample			Comp	onent	Percent	tages							Perce	entiles						Sortin	g Statisti	cs (Folk))
ID/	Gravel			Sand			Fin	es				Pa	rticle Dia	nmeter (n	nm)				Median	Mean	Sorting	Skew.	Kurt.
Depth(ft)		vcgr	cgr	mgr	fgr	vfgr	silt	clay	5	10	16	25	40	50	75	84	90	95	mm	mm	¢		
UVB-2-76	0.00	0.00	0.00	2.22	10.23	16.41	54.09	17.05	0.1851	0.1390	0.1075	0.0729	0.0381	0.0231	0.0062	0.0037	0.0024	0.0015	0.023	0.021	2.277	0.116	0.803
									fgr	fgr	vfgr	vfgr	silt	silt	silt	clay	clay	clay	silt	silt	v. Poor	fine	platykurtic
UVB-9-72	0.00	0.00	0.00	0.00	0.95	15.14	68.59	15.32	0.0967	0.0782	0.0625	0.0464	0.0296	0.0215	0.0071	0.0041	0.0026	0.0016	0.021	0.018	1.883	0.243	0.899
									vfgr	vfgr	silt	silt	silt	silt	silt	silt	clay	clay	silt	silt	Poor	fine	platykurtic

** Particle-size distribution pattern precludes calculation of these statistical parameters


Comp. : Calscience Environmental Laboratories, Inc. Proj. No. : 11-12-0606

		Particle	Size Distrib	oution				Sortin	g Statistic	s (Folk)	
		Diam				aht %	Paramet	ter	Trask	Inman	Folk
	[US Mesh] 5	[in.] 0.157480	[mm] 4.00000	<u>[@]</u> -2.00	[Incl.] 0.000	[Cum.] 0.00	Median			Silt sized	
Granule	6	0.132425	3.36359	-2.00	0.000	0.00	Weulai			Sill Sizeu	
Granale	7	0.111355	2.82843	-1.50	0.000	0.00	(in))	0.0009	0.0009	0.0009
	8	0.093638	2.37841	-1.25	0.000	0.00		•			
	10	0.078740	2.00000	-1.00	0.000	0.00	(m	m)	0.0231	0.0231	0.0231
	12	0.066212	1.68179	-0.75	0.000	0.00				0.14	
V Crse Sand	14 16	0.055678 0.046819	1.41421 1.18921	-0.50 -0.25	0.000 0.000	0.00 0.00	Mean			Silt sized	
Sanu		0.039370	1.00000	0.00	0.000	0.00	(in))	0.0016	0.0008	0.0008
	<u>18</u> 20	0.033106	0.84090	0.25	0.000	0.00	()	,	010010	0.0000	0.0000
Coarse	25	0.027839	0.70711	0.50	0.000	0.00	(mi	m)	0.0395	0.0199	0.0209
Sand	30	0.023410	0.59460	0.75	0.000	0.00	0			V	
	35 40	0.019685	0.50000	<u>1.00</u> 1.25	0.000	0.00	Sorting			V. Poor	
Medium	40	0.013919	0.35355	1.50	0.013	0.24			3.441	0.185	2.277
Sand	50	0.011705	0.29730	1.75	0.756	1.00			0.111	0.100	2.277
	<u>60</u> 70	0.009843	0.25000	2.00	1.220	2.22	Skewnes	SS		Finely skewe	d
		0.008277	0.21022	2.25	1.469	3.69					
Fine	80	0.006960	0.17678	2.50	2.008	5.69			0.916	0.202	0.116
Sand	100 120	0.005852 0.004921	0.14865 0.12500	2.75 3.00	2.848 3.910	8.54 12.45	Kurtosi	<u>د</u>		Platykurtic	
	140	0.004138	0.10511	3.25	4.098	16.55	Ruitosi	3			
V. Fine	170	0.003480	0.08839	3.50	4.034	20.58			0.244	0.433	0.803
Sand	200	0.002926	0.07433	3.75	3.986	24.57					
	230 270	0.002461	0.06250	4.00	4.297	28.87	C Gravel Sand 0.00 28.87		onent Perce		
	270 325	0.002069 0.001740	0.05256 0.04419	4.25 4.50	4.195 3.853	33.06 36.91	Gravel	Sand	Silt	Clay	Silt + Clay
	400	0.001463	0.03716	4.75	3.611	40.52	Gravel Sand		54.09	17.05	71.13
Silt	450	0.001230	0.03125	5.00	3.558	44.08					
	500 635	0.001035	0.02628	5.25 5.50	3.491 3.306	47.57			D	article Diama	4.0.7
	035	0.000870 0.000732	0.02210 0.01858	5.50 5.75	3.306	50.88 54.09	[Weight.			article Diame	l [phi]
		0.000615	0.01562	6 00	3.291 3.384	57.38 60.76		/01			
		0.000517	0.01314	6.25	3.384	60.76	5		0.0073	0.1851	2.4334
		0.000435 0.000366	0.01105 0.00929	6.50 6.75	3.337 3.335	64.10 67.43	10		0.0055	0.1390	2.8467
		0.000308	0.00781	7.00	3.233	70.67	10		0.0055	0.1590	2.0407
		0.000259	0.00657	7.25	3.190	73.86	16		0.0042	0.1075	3.2171
		0.000217	0.00552	7.50	3.076	76.93	05		0.0000	0.0700	0 7700
		0.000183 0.000154	0.00465 0.00391	7.75 8.00	3.070 2.948	80.00 82.95	25		0.0029	0.0729	3.7783
		0.000129	0.00328	8.25	2.782	85.73	40		0.0015	0.0381	4.7156
		0.000109	0.00276	8.50	2.516	88.25					
Class		0.000091 0.000077	0.00232 0.00195	8.75 9.00	2.241 1.935	90.49 92.42	50		0.0009	0.0231	5.4338
Clav		0.000065	0.00195	9.00	1.635	92.42 94.06	75		0.0002	0.0062	7.3440
		0.000054	0.00138	9.50	1.364	95.42	-				
		0.000046	0.00116	9.75	1.139	96.56	84		0.0001	0.0037	8.0921
		0.000038 0.000032	0.00098 0.00082	10.00	0.946 0.788	97.51 98.30	90		0.0001	0.0024	8.6926
		0.000027	0.00069	10.25 10.50	0.639	98.94	90		0.0001	0.0024	0.0320
		0.000023	0.00058	10.75	0.493	99.43	95		0.0001	0.0015	9.4173
		0.000019	0.00049	11.00	0.343	99.77					1
		0.000016 0.000015	0.00041 0.00038	11.25 11.50	0.174 0.054	99.95 100.00	** Distribution pa	ttern preclue	tes calculation	of these statistic	al parameters
		0.000010	0.00000	11.00	0.004	100.00	Distribution pa			5	a. paramotoro.

Comp. : Calscience Environmental Laboratories, Inc. Proj. No. : 11-12-0606

		Particle	Size Distrib	ution				Sorti	ng Statistic	s (Folk)	
		Diam				aht %	Param	eter	Trask	Inman	Folk
	[US Mesh] 5	[in.] 0.157480	[mm] 4.00000	[b] -2.00	[Incl.] 0.000	[Cum.] 0.00	Media			Silt sized	
Granule	6	0.132425	3.36359	-1.75	0.000	0.00	INIEUR	an		Silt Sizeu	
	7	0.111355	2.82843	-1.50	0.000	0.00	(i	in)	0.0008	0.0008	0.0008
	8	0.093638	2.37841	-1.25	0.000	0.00					
	10	0.078740	2.00000	-1.00	0.000	0.00	(1	mm)	0.0215	0.0215	0.0215
V Crse	12 14	0.066212 0.055678	1.68179 1.41421	-0.75 -0.50	0.000 0.000	0.00 0.00	Mea	n		Silt sized	
Sand	16	0.046819	1.18921	-0.25	0.000	0.00	Wea			Sint Sizeu	
	18 20	0.039370	1.00000	0.00	0.000	0.00	(i	in)	0.0011	0.0006	0.0007
•	20	0.033106	0.84090	0.25	0.000	0.00	,		0.0007	0.0400	0.0470
Coarse Sand	25 30	0.027839 0.023410	0.70711 0.59460	0.50 0.75	0.000 0.000	0.00 0.00	()	mm)	0.0267	0.0160	0.0176
Sanu	35	0.019685	0.50000	1.00	0.000	0.00	Sorti	na		Poor	
	<u>35</u> 40	0.016553	0.42045	1.25	0.000	0.00					
Medium	45	0.013919	0.35355	1.50	0.000	0.00			2.554	0.256	1.883
Sand	50	0.011705	0.29730	1.75	0.000	0.00	01			-	
	<u>60</u> 70	0.009843	0.25000	<u>2.00</u> 2.25	0.000	<u>0.00</u> 0.00	Skewn	less		Finely skewe	a
Fine	80	0.006960	0.17678	2.50	0.000	0.00			0.845	0.405	0.243
Sand	100	0.005852	0.14865	2.75	0.078	0.08					
	120	0.004921	0.12500	3.00	0.868	0.95	Kurto	sis		Platykurtic	
V Eine	140	0.004138	0.10511	3.25	2.475	3.42			0.000	0 500	0.000
V. Fine Sand	170 200	0.003480 0.002926	0.08839 0.07433	3.50 3.75	3.785 4.172	7.21 11.38			0.260	0.509	0.899
Janu	230	0.002461	0.06250	4.00	4.704	16.08		Com	ponent Perce	entages	
	270	0.002069	0.05256	4.25	5.082	21.17	Gravel	Sand	Silt	Clay	Silt + Clay
	325	0.001740	0.04419	4.50	5.468	26.63	0.00	40.00	00.50	45.00	00.00
Silt	400 450	0.001463 0.001230	0.03716 0.03125	4.75 5.00	5.763 5.847	32.40 38.24	0.00	16.08	68.59	15.32	83.92
	500	0.001035	0.02628	5.25	5.671	38.24 43.92					
	635	0.000870	0.02210	5.50	5.297	49.21	Percer			article Diame	
		0.000732 0.000615	0.01858 0.01562	5.75	4.888	54.10 58.63	[Weigh	t. %l	[in.]	[mm]	[phi]
		0.000517	0.01314	6.00 6.25 6.50	4.525 4.168	58.63 62.79	5		0.0038	0.0967	3.3701
		0.000435	0.01105	6.50	3.785 3.509	66.58					0.0704
		0.000366 0.000308	0.00929 0.00781	6.75 7.00	3.509 3.238	70.09 73.33	10		0.0031	0.0782	3.6761
		0.000259	0.00657	7.25	3.062	76.39	16		0.0025	0.0625	4.0002
		0.000217	0.00552	7.50 7.75	2.868	79.26					
		0.000183 0.000154	0.00465 0.00391	7.75 8.00	2.784 2.639	82.04 84.68	25		0.0018	0.0464	4.4307
		0.000129	0.00328	8.25	2.480	87.16	40		0.0012	0.0296	5.0776
		0.000109	0.00276	8.50	2.249	89.41					
Clay		0.000091 0.000077	0.00232 0.00195	8.75 9.00	2.022 1.765	91.43	50		0.0008	0.0215	5.5401
Ciay		0.000065	0.00195	9.00	1.508	93.20 94.70	75		0.0003	0.0071	7.1362
		0.000054	0.00138	9.50	1.264	95.97					
		0.000046	0.00116 0.00098	9.75 10.00	1.051 0.857	97.02 97.87	84		0.0002	0.0041	7.9336
		0.000038 0.000032	0.00098	10.00	0.698	97.87 98.57	90		0.0001	0.0026	8.5704
		0.000027	0.00069	10.50	0.550	99.12					
		0.000023	0.00058	10.75	0.413	99.54	95		0.0001	0.0016	9.3048
		0.000019 0.000016	0.00049 0.00041	11.00 11.25	0.281 0.140	99.82 99.96					1
		0.000015	0.00038	11.50	0.140	100.00	** Distribution	pattern preclu	udes calculation	of these statistic	al parameters.
					1						

94	Calscience - 7440 LINCOLN WAY Environmental GARDEN GROVE. CA 92841-1427	A 92841-1427	U	ļ	Core	Labs				\wedge	CHA DATE:	AIN O	CHAIN OF CUSTODY RECORD	TODY	REC	NOR NOR	0
	, Inc.	TEL: (714) 895-5494 . FAX: (714) 894-7501	/				Concession.	No. of Concession, Name		1	PAGE			PF PF		-	
Cal	Calscience Environmental Laboratories, Inc.	ss, Inc.				CLIEN	HKUJE		CLIENT PROJECT NAME / NUMBER:	- Ö	90		P.O. NO.:				nd generalised
ADC 744	ADDRESS 7440 Lincoln Way					PROJE	PROJECT CONTACT:	ITACT:					QUOTE NO.:	NO.:			Τ
Gar	Garden Grove, CA 92841-1427					-		Ω2	Ranjit Clarke	Cla	-ke		LAB USE ONLY	E ONLY			Τ
TEL: (714	E-MAIL	rclarke@calscience.com	nce.com			SAMPL	SAMPLER(S): (PRINT)	(TNINT)									
۳ ۲		72 HR 🔲 5 DAYS	s N	Normal	mal					RE	DUES	ED A	REQUESTED ANALYSIS				Γ
SPE	SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)	PLES UNTIL				MTSA			RP40)								
as (SPECIAL INSTRUCTIONS) noitud	(9122		I9A) no								
5	Original COC attached. Call if any questions.	questions.					e (ASTM D:	aned nist	iterute2 bii								
LAB USE ONLY	SAMPLE ID	SAMPLING DATE	NG	Matrix	#Cont	10 2240	otal Po Noistur		IT 910	JAAN							
7	UVB-2-76	12/08/11	11:37	S	-					×	<u> </u>				-	ļ	Γ
1	UVB-2-72	12/08/11	11:19	S	1				ļ	×						ļ	
7	UVB-9-68	12/08/11	15:42	S	-					×					<u> </u>		
7	UVB-9-72	12/08/11	15:45	S	1	×	××	×	×	×							
							_										
								_									
Relir	Relinquished by: (Sighature)	(CALSO	SCIENCE)	Received	Received by / Affiliation: (Signature)	t: (Signatu A ∽	5180		24094	4			Date: 24/12/11		Time:	S	ſ
Relir	Relinquished by: (Signature)			Received	Received by / Affiliation: (Signature)	n: (Signatu	lure)						Date: 12/13/1	-	Time:	JUAN	F
Relir	Relinquished by: (Signature)			Received	Received by / Affluction: (Signature)	(Signatu	n (au						Date:		Time:		Γ
			Return to	Contents								1		1			٦

Page 51 of 69

H 411088 EN

		Environme	ental La	bora		ries, Inc.	nc.	A	4 411088EN	1096	E		-	CHA	O NI	Ц С	JST	G	RE	CHAIN OF CUSTODY RECORD	۵	
	Cal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494	A 92841-1427	NorCal Service Center 5063 Commercial Circle, Concord, CA 94520-8577 (925) 689-9022	rvice Cel mercial (CA 9452(9022	e,	Suite H		T/#OM		NIN	BO	9		Date_	1	11	oť		2		1	
Γ	LABORATORY CLIENT:							CLIENT	, A	T NAME			410	- Inchit	1	P.O. NO.:	10.:					
AD	ADDRESS, 00 WJ. WIRLNIN.	151						PROJECT C	45	D F W Q K	10 TK	1	4	D	2	ŞAMF	SAMPLER(S): (PRINT)	: (PRII	C (L)	1		F
อี	orrandena		STATE			9.1124		Mann		-UCAS	'n					KIN	974	reh	J Ch	CILLIN	14	6
C2l		E-MAIL: MARKAN, MACAS	90	SNS.C	Mo				•		RE(DCE	REQUESTED	1.20	ANALYSES	۲YS	ES		,) rz	bo	3/ 6	117
50	NARÓUND TIMÈ: SAME DAY 🛛 24 HR 🗌	48 HR 72 HR		Z STANDARD	-			(†	(i	1								equ		ofK	110
	COELT EDF GLOBAL ID					LOG CODE	ш	-(C9-C4				(98						((01) 7 61	(hug
с. С	SPECIAL INSTRUCTIONS:							10 (92)-9		or (Prep (503			((X		er-OT) ro	indd l	dy la	OF30	10
						ра, рала	ltered	or GRO or (CI	SƏJ	NTBE (8260)	(0928) səte	I Terra Core I	(0228)	(1808) at 	310) or (8270	747/0103) sle	196 or 7199 c	(A41-OT) 20	(6) [LO-3]	Why Ku	1130	<u> </u>
LAB		SAMPLING	ING		N. N.	eserv	i-i ble	2	-	8) sO(Core		sticide		2 Met			HAL-	202	2	LH4
ONLY		DATE	TIME		CONT.	_	Ъ	\leq	-			Εu		_		12			NA NA	nd na	Wy NY	ſV
~	UVB-2-11	12/8/2011	0153	So	8			× (×	*	×											
4	11118-2-30	1102/2/2/21	0931	8	R			x x	X	X	X											
r	1	12-8-2011	1000	8	8			x R	X	×	×											
7	G	1102/2/21	00//	ŝ	8			R X	x	×	Х											
~	UVB-2-76	11/18/2011	1137	2	6			X X	X	<i>×</i>	X.								~	R	X	
e e	UVB-2-72	12/8/201	1119	3	Ġ			×	X	X	X				_		_		_			×
æ	111B-9-24	12/8/2011	Sohl	50	6			R R	X	X	X											
do	WVB-9-28	1/02/8/11	1416	3	8			XX	X	x	x											
9	1148-9-61	12/2/2011	1520	8	8			X X	X	<u>х</u>	X											
01	UVB-9-610-	12/8/2011	1520	50	8			~ ~	XX	<u>×</u>	X											-
Re	Relinquished by: (Signature)	and,			Rec	Received by:	(Signatu	(Signature/Affiliation)	(ind						Date	18	11		Time:	20	age	
R	Relinquished by tsighadarey	- Jaco			Rec	Received by: (Signature)	Signatu	12	filiation)	0					- at	100	1		Time	20	52	50
Re	Relinquished by: (Signature)				Rec	Received by: ((Signature/	K-	tion			œ			Date:	13	111		Time: 10.23	30 AM	of 69	- (00
]	DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.	final report, Green an d 2 of 2 of our T/Cs al	d Yellow to Clien re printed on the	t. reverse s	de of the	Green an	d Yellow	copies re	0 espective	JV.									6/01/1	06/01/10 Revision	1	

Please note that pages 1 and 2 of 2 of our 1/Cs are printed on the reverse side of the Gr Return to Contents

									70	HAN	A.	×						Page	53 (of 60	
Δ	I I			-				3219	:यग्रा	PART		X				TT		ayc		W	
OR				maic	A			- J17	Rus	2010		×						1	30	0 A	Revisi
EC		1	N-	à	62	1519	A P	- Mito	19+7	inna siava		X						2	8-30	0:30	06/01/10 Revision
ΥR		1	S E	r					[E-OT] (9) H									Time:	Timè (Time: //	0/90
CHAIN OF CUSTODY RECORD		1		Ź			(01-0T) or (A41-OT) 20	OV - 1iA											
JST	of	:0	3 H H S H H	I	ES			[9.812 10 G	196 or 719	Cr(VI) [7]						+		11	11/2	111	
ີວັ	K	P.O. NO.	AMP	ğ	ANALYSES			(X21	-2/01.09) sle	T22 Met				-				2/2	T	161	
D	20	00		<u> </u>	AL			(02	310) or (82	8) sANG								Date:	Date:	Pate:	
AIN		NN			AN				(280)	PCBs (8								-			
E	Date_ Page_		,						(1808) se	Pesticide											
					REQUESTED		-		(0728)	SVOCS								1			
	1	3	XX XX		Ш С		(92)	e Prep (503	/ Terra Cor	En Core								1	5		
2	0	MBEF	UK	R	В Ш				(0928) sete	Oxygens	7	X				+		1	cel		
E	USE ONLY - 0 0 0	E/NU	NO I NUKU	JG	R					8) sOOV	×	×				+					
00	A REA	NAM		7		() ot (NTBE (8260		_								×		
411		DUECT	CONTACT	Ņ		(SU		ブ	X		-					2	0	0
# 411088EN	P B	TPRO	A	Ar		(†	+D-9D).	Ce-C36) oi	or DRO or (×	7				+		Lation	filiatiof	ation	
1-		CLIENT PROJECT NAME / NUMBER	PROJECT	M						(6) HAT	7	×				+		R		e/Affi	
ö	100 0000	-							ltered	Field Fi						+		inatur	matur	ynatur 6	0
Inc				J.	, ₍))	DE			Ргезел								r: (Sig	by: (Signature)A	r: (Sig	
tories, Inc.	еН			112	: Ġ		LOG CODE	<u> </u>		Dupres						+		Received by: (Signature/Affiliation)	ved b	Received by: (Signature/Affiliation)	
orie	r, Suit			2	12051		2		pavra							<u> </u>		Gecei	Received I	Recei	
atc	Circle 0-857				Da					NO. OF CONT.	0	0	.							-	
OC	srcial 9452 22				P	IDAR				MATRIX	20	R						1			
ab	NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022				X	STANDARD				2	V					+					lient.
	orCal 063 C oncor (25) 6			STATE	E.					TIME	2	3									v to C
nta	2 5 0 9			15 A	3	· ~					154	12									Yellov
me	_					72 HR				SAMPLING		1							}		n and
no	427				J.					S, DATE	-11	2						14			Gree
vir	341-14		1		L L	뜻					12-8.	121	•					2	A	Þ	report
ц	у А 928		5		E-MAIL:	48 HR				<u>├</u>			·	-		+	•	1	St	Þ	final
e e	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494	8	Wh Inn +		n		GLOBAL ID											len	2		ie with
u c	SoCal Laborato 7440 Lincoln W Garden Grove, (714) 895-5494	Rest		n n	622]24 HR	GLOF			₽		2						urey	C L	ure)	I: Whit
Cie	SoCal 7440 Garde 714)	70	\$-	le	1			ONS:		SAMPLE ID	(2)-	1	•					ignat	Hignat	ighat	UTION.
Calscience Environmental Labora		CLIEP			20	TIME	DF	RUCT		SAI	-b-2	18-9						by: (S	by: (S	by: (S	DISTRIBUTION: White with final report, Green and Yellow to Client.
C		TORY	S. P.I	1 al	-ch	E DA'	COELT EDF	INST.			IV p	IVE						shed	ished	shed	DIS
		LABORATORY CLIENT	ADDRESS	2 Z	2	TURNAROUND TIME		SPECIAL INSTRUCTIONS:		a w≻	1 6	12/21		2005	50 S.S.			Relinquished by: (Signature)	Relinquished by: (Signatu lo)	Relinquished by: (Sighature)	
		P	AD	СІТУ	E.e	20		Р		LAB USE ONLY	11	-		-				Re	Re	Å	

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

teturn to Co

January 05, 2012

Mr. Ranjit Clarke Calscience Environmental Laboratories 7440 Lincoln Way Garden Grove, CA. 92841-1432

Re: 11-12-0606

Dear Mr. Clarke,

Enclosed are analytical results for two soil samples ID UVB-2-72 and UVB-9-72 submitted to Zymax on December 16, 2011. The data were obtained from GC/MS full scan analysis on the extract of samples.

The project was performed at Zymax forensics as Laboratory No. 42478.

Please call us at 760-781-3338 or email me at <u>Shantan@zymaxusa.com</u> if you have any questions regarding the analytical results.

Sincerely,

Shan-Tan Lu, PhD Director of Forensic Geochemistry

ZYMAX Environmental Forensics Solutions from DPRA

N 033 DEG D6 MIN 56.52 SEC W 117 DEG 06 MIN 45.27 SEC

600 S. Andreasen Drive Suite B Escondido, CA 92029

760.781.3338 Voice 760.781.3339 Fax

www.dpra.com

Printed on recycled paper

DFSP Norwalk

Report Prepared for:

Parsons 100 West Walnut Street Pasadena, CA 92214

> Report Prepared By: Alan Jeffrey, PhD

ZymaX Forensics, 600 S. Andreasen Ave, Suite B, Escondido, CA 92029

6 January 2012

TABLE OF CONTENTS

INTRODUCTION	3
METHODOLOGY	3
ORGANIC COMPOUNDS IN SOIL SAMPLES	4
CONCLUSIONS	5

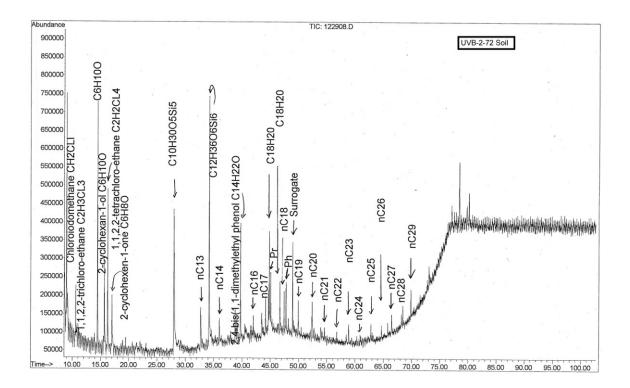
Introduction

Two soil samples, labeled UVB-2-72 and UVB-9-72, were received at Zymax on December 16, 2011 for identification of hydrocarbons and other organic chemicals in the samples. C_8-C_{40} GC/MS Full Scan analysis was performed on solvent extracts of the soil samples.

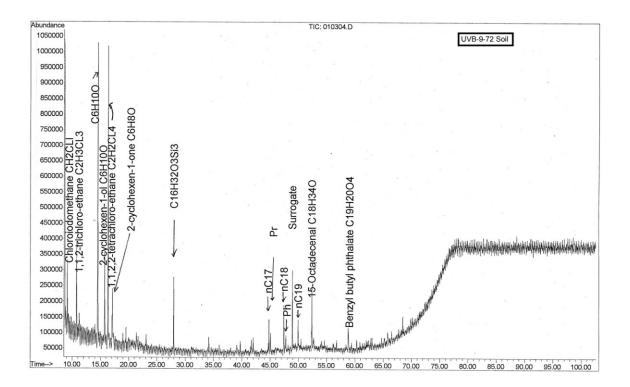
The complete laboratory data report is presented as an Appendix to this report.

Methodology

C₈-C₄₀ GC/MS Full Scan analysis


In an effort to obtain as much material as possible from the samples, 25g of soil was extracted with methylene chloride solvent and the solvent extract concentrated to 0.2 ml.

Extracts were directly injected into a GC equipped with a 60 meter DB1 column to separate the hydrocarbons, which are detected with a mass spectrometer (MS) in full scan mode, interfaced to the GC. Hydrocarbons in the range of C_8 to C_{40} are identified. By scanning the ion fragments shown in the following table, chromatograms of a number of classes of hydrocarbons are generated. Aromatic hydrocarbons are identified by scanning over a large number of ion fragments, and the results are normalized in a bar diagram.


ION (M/Z)	COMPOUND CLASS
TIC	All Compounds
85	n-Alkanes
113	Iso-Alkanes and Isoprenoids
83	Alkylcyclohexanes
134	C ₄ -benzenes
123	Bicyclanes
191	Terpanes
217	Steranes
253	Monoaromatic Steranes
231	Triaromatic Steranes
Bar Diagram	Aromatic Hydrocarbon Distribution

Organic Compounds in Soil Samples

The Total Ion Chromatograms (TIC), which provide the distributions or fingerprints of hydrocarbons and other organic chemicals in the samples are shown on the following pages. The chromatogram of UVB-2-72 is shown below. The major constituents are non-hydrocarbons: several light halocarbons, a phenol and other oxygen-containing compounds. A suite of hydrocarbons from nC_{13} to above nC_{29} was also detected. The n-alkane (Ion 85) chromatogram of this sample in the data appendix shows a strong preference for the odd-numbered alkanes from C25 to C32. This is a characteristic of hydrocarbons formed from recent organic matter, rather than petroleum hydrocarbons. The remaining suite of hydrocarbons contains abundant hydrocarbon heavier than C17; these are beyond the carbon range of jet fuel, which is C9 to C16. There is no evidence in the TIC chromatogram of hydrocarbons associated with gasoline, although the C_8 - C_{40} GC/MS Full Scan analysis is not designed to detect hydrocarbons smaller than C7. Depending on the quantitation method, it is possible that the light halocarbons and oxygen-containing compounds in this sample would be included in a Total Petroleum Hydrocarbon (TPH) gasoline concentration.

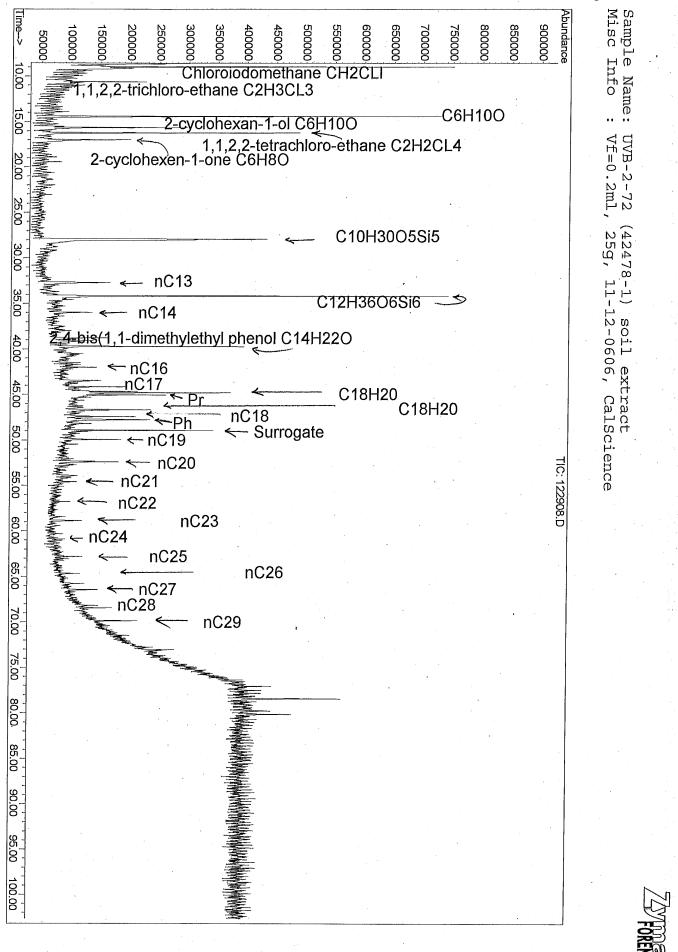
The chromatogram of UVB-9-72 is shown below. The major constituents are again nonhydrocarbons: several light halocarbons and oxygen-containing compounds. A suite of hydrocarbons primarily from nC_{17} to nC_{19} was also detected. These hydrocarbons are beyond the carbon range of jet fuel. There is no evidence in the TIC chromatogram of hydrocarbons associated with gasoline.

Traces of aromatic hydrocarbons were identified in both samples, as shown in the data appendix. However, the hydrocarbon-specific chromatograms in the appendix are very sensitive to the hydrocarbons detected, which, in the case of the aromatic hydrocarbons, are in such trace amounts that their peaks are not detectable in the TIC.

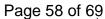
Conclusions

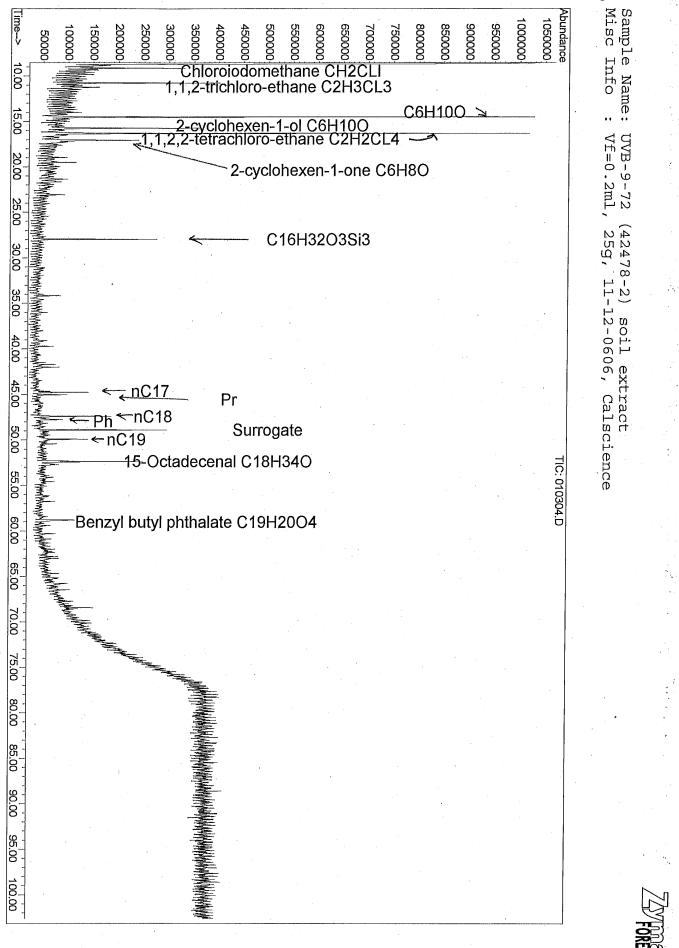
Soil samples UVB-2-72 and UVB-9-72 contain predominantly light halocarbons and oxygen-containing compounds.

UVB-2-72 also contains a suite of hydrocarbons from nC_{13} to above nC_{29} . The heavier hydrocarbons are formed from recent organic matter, rather than petroleum hydrocarbons. Most of the remaining hydrocarbons are heavier than jet fuel.


UVB-9-72 also contains a suite of hydrocarbons from nC_{17} to nC_{19} , which is heavier than the hydrocarbons in jet fuel.

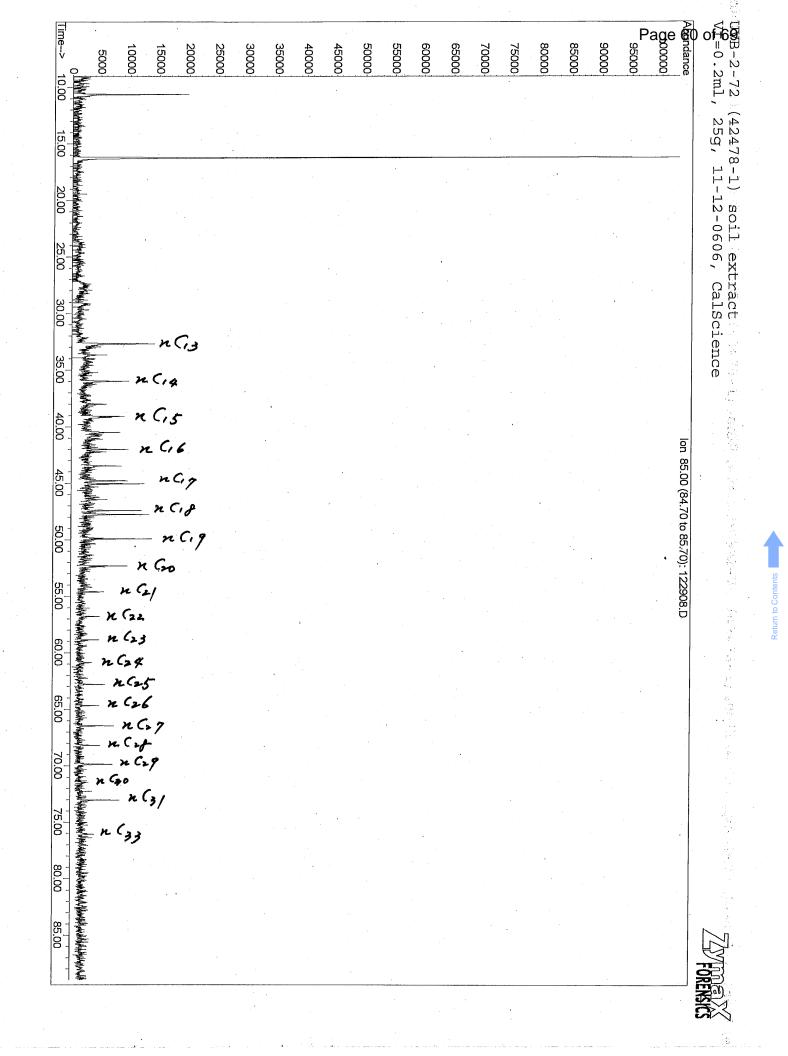
DFSP Norwalk

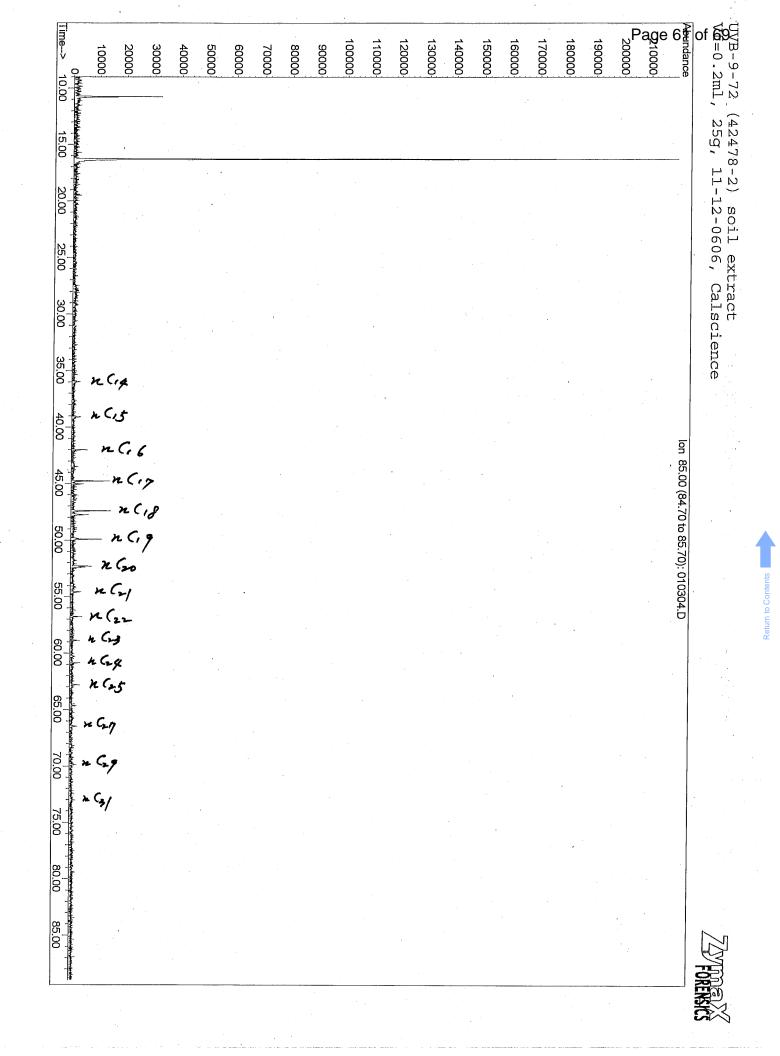

Refinquished by: (Signature)	Relinquished by: (Signature)	Refinguising by: (Signature)					UVB-9-72 -2	UVB-2-72 42478-1	USE SAMPLE ID	Any questions on analysis required please call Mary Lucas (Parsons) at 626-440-6032.	RWQCB REPORTING ARCHIVE SAMPLES UNTIL			Garden Grove, CA 92841-1427	A40 Lincoln Way	Galscience Environmental Laboratories, Inc.	o TEL: (714) 895-5494 . FAX: (714) 894-7501		- 7440 LINCOLN WAY
	(CALSCIENCE)						12/08/11 15	12/08/11 11	SAMPLING DATE TI	please call Mary	LES UNTIL /	R 5 DAYS	rclarke@calscience.com			, Inc.	AX: (714) 894-7501	12841-1427	
Receiver		Received	 				15:45 S	11:19 S	TIME	/ Lucas	1	X Normal	com						1
Received by / Affiliation: (Signature)	Received by / Affiliation: (Signature)	Received by / Affiliation: (Sionature)			-	 	2	2	ч ^{юО#} GCMS			nal						TO: DPRA Zymax	
Sīgnature)	Signature)	ionature)					X X	XX	GC/FI)		-	SAMPLER(S): (PRINT)		PROJECT CONTACT:	CLIENT PROJECT NAME / NUMBER:		/max	to Contents
	lax			 		 						REC	1	Ranjit Clarke		AME/NUMBER:		V	Return t
										an an an Charlen an Anna Anna Anna Anna Anna A An Anna anna a		REQUESTED ANALYSIS		'ke)6	PAGE:	DATE:	CHAIN
Date:	12/16/1 Date:	22 27 		 					,			ANALYSIS		LAB USE ONLY	QUOTE NO.	P.O. NO.:			
Time:	1 13:35	Simp-												OALY	10		oF 1	12/16/11	CHAIN OF CLISTONY BECORN

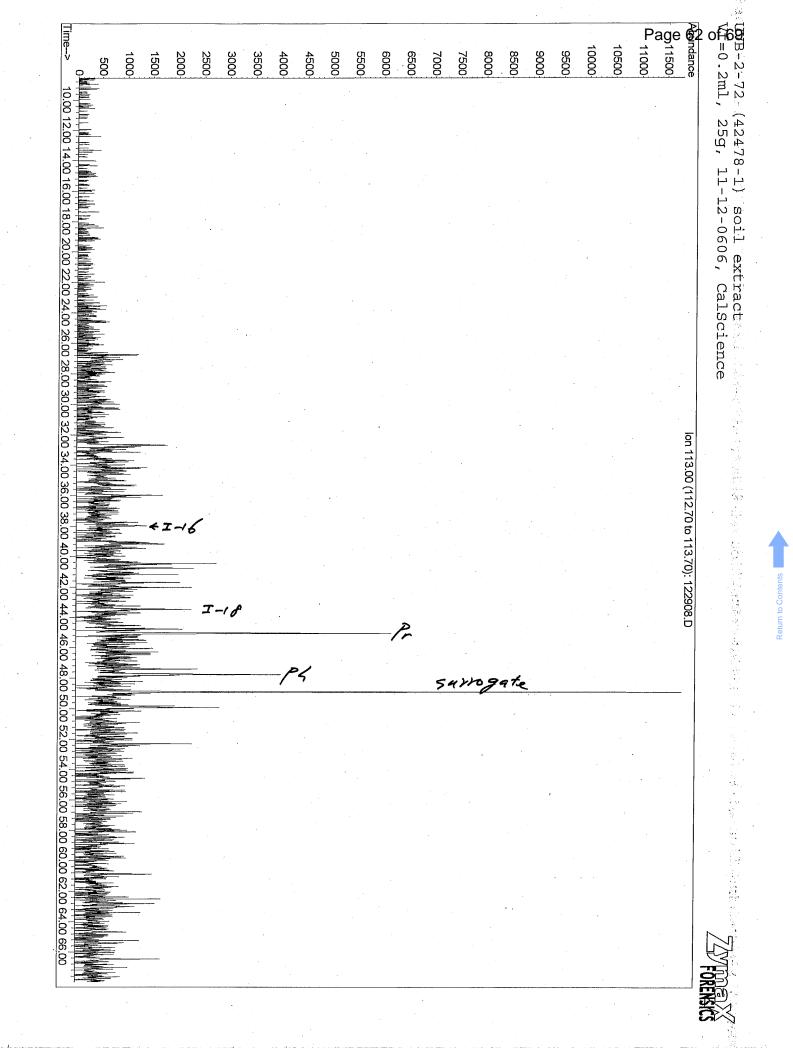

GC/MS Full Scan Analysis

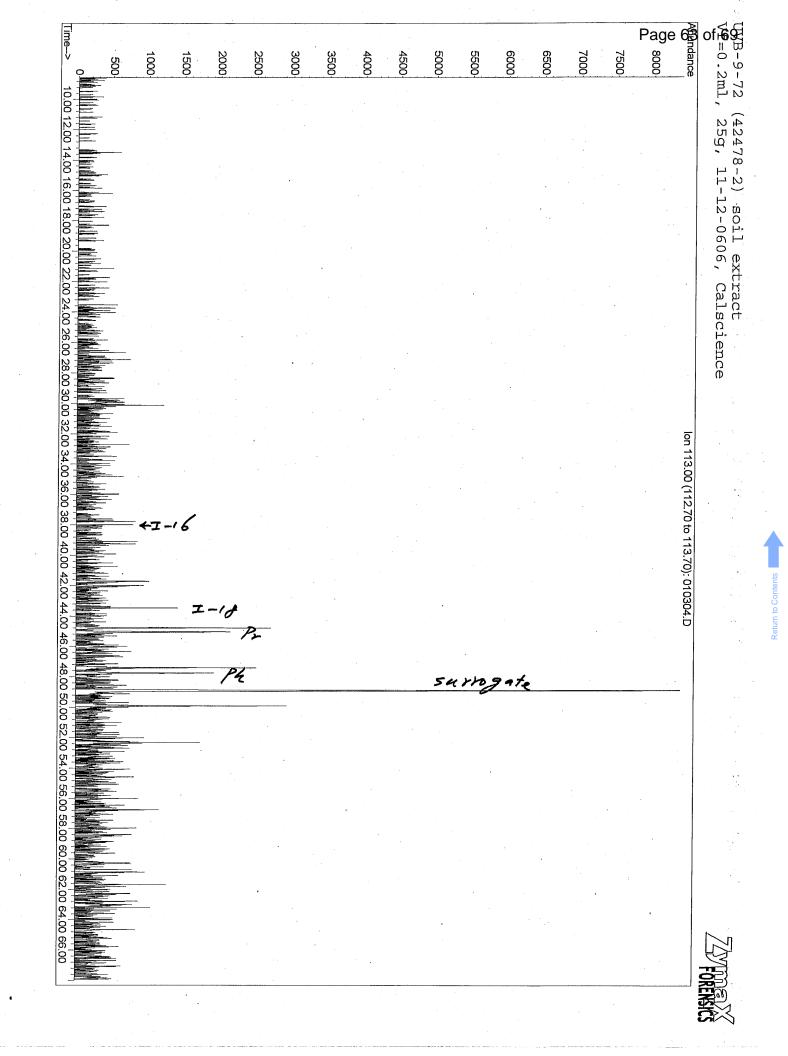
Page 57 of 69

.




Return to Con


Table


Key to Chromatogram Symbol Identification for m/z 85 and m/z 113 Paraffins and Isoparaffins

Symbol	Detail
i-10	Iso-alkane with 10 carbon atoms
i-15	Farnesane (isoprenoid with 15 carbon atoms)
I-16	Isoprenoid with 16 carbon atoms
Pr	Pristane (isoprenoid with 19 carbon atoms)
Ph	Phytane (isoprenoid with 20 carbon atoms)
nC ₈	n-C ₈ normal alkane
nC ₁₅	n-C ₁₅ normal alkane
i-8	2,5-(2,4)-Dimethylhexane
ì-8'	2,3,4-Trimethylpentane
i-8"	2,3-Dimethylhexane
CH-n	Alkylcyclohexane (where n indicates number of carbon atoms in the side chain)

Table

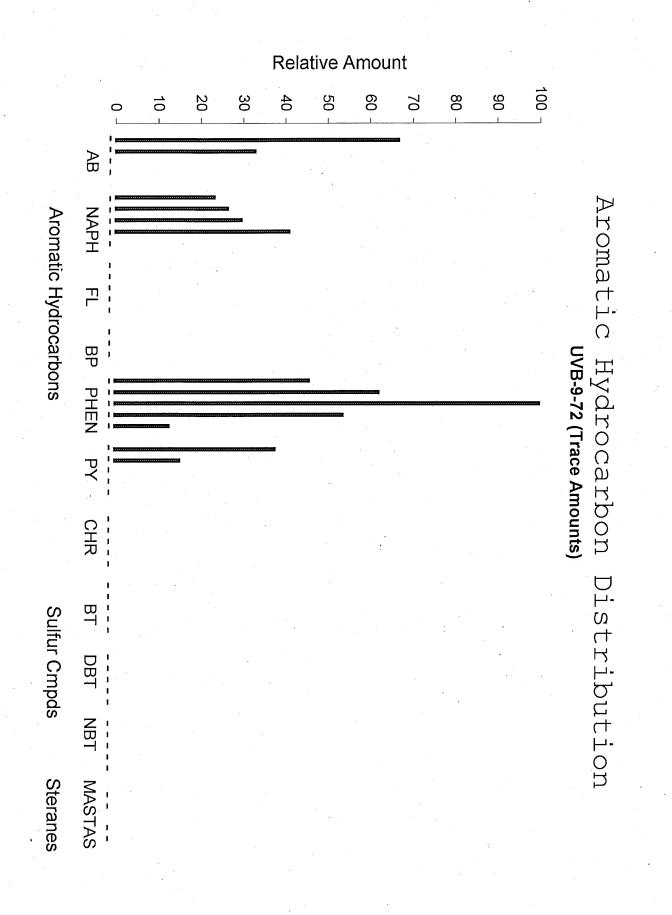
Key for Alkylcyclohexanes at m/z 83

Symbol	Detail		
CH-1:	Methylcyclohexane		
CH-2;	Ethylcyclohexane		
CH-3:	Propylcylohexane		
CH-4:	Butylcyclohexane		
CH-5;	Pentylcyclohexane	· · · · · · · · · · · · · · · · · · ·	•
CH-6:	Hexylcyclohexane		
CH-7:	Heptylcyclohexane		
CH-8:	Octylcyclohexane	•	
CH-9:	Nonylcyclohexane		
CH-10:	Decylcyclohexane		
CH-11:	Undecylcyclohexane		
CH-12:	Dodecylcyclohexane	•	
CH-13:	Tridecylcyclohexane		
CH-14:	Tetradecylcyclohexane		
	·		

Page & Addance UD0B-2-72 (42478-1) soil extract V1=0.2ml, 25g, 11-12-0606, CalScience Time--> 180000 110000-140000 170000 120000 130000 150000 160000 100000 30000 60000 90000 20000 50000 80000 10000 40000 70000 a the production of the second of the second s 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 the west of the property of the property of <u>umproving and the proving and</u> lon 83.00 (82.70 to 83.70): 122908.D Alkylcyclohexanes (Absent) FORENAICS ي مور نهريا رويد

UVB-9-72 (42478-2) soil extract VG=0.2ml, 25g, 11-12-0606, Calscience of Abondance e e ge ag20000 Time--> 280000 300000 100000 120000-160000-240000-260000 140000 180000 200000-220000 60000 80000 20000 40000-lon 83.00 (82.70 to 83.70): 010304.D Alkyl cyclo hexanes (Absent) ORENACS

Table


Page 67 of 69

Return to Cor

Key for Identifying Aromatic Hydrocarbons

No.	· m	/z Abbreviation	Compound	
1	12	20 AB	C ₃ -alkylbenzenes	
2	13	4	C ₄ -alkylbenzenes	
2 3	14	8	C ₅ -alkylbenzenes	
4	16		C ₆ -alkylbenzenes	
5	12		C ₀ -naphthalene	
6	14		C ₁ -naphthalenes	
7	15		C ₂ -naphthalenes	
8	17		C_3 -naphthalenes	
9	18		C₄-naphthalenes	
10	16		C ₀ -fluorene	
11	18		C ₁ -fluorenes	
12	19		C_2 -fluorenes	
13	20		C_3 -fluorenes	
14	20		C ₄ -fluorenes	
14	15			
			C ₀ -biphenyl	
16	16		C ₁ -biphenyls + dibenzofuran	
17	18:		C ₂ -biphenyls + C ₁ -dibenzofuran	
18	178		C ₀ -phenanthrene	
19	192		C ₁ -phenanthrenes	
20	206		C ₂ -phenanthrenes	
21	220		C ₃ -phenanthrenes	
22	234		C₄-phenanthrenes	
23	202		C ₀ -pyrene/fluoranthene	
24	216		C ₁ -pyrenes/fluoranthenes	
25	230		C ₂ -pyrenes/fluoranthenes	
26	244		C ₃ -pyrenes/fluoranthenes	
27	258		C ₄ -pyrenes/fluoranthenes	
28	228	CHR	C ₀ -chrysene	
29	242		C ₁ -chrysenes	
30	256		C ₂ -chrysenes	
31	270		C ₃ -chrysenes	
32	284		C ₄ -chrysenes	
33	148	BT	C ₁ -benzothiophenes	
34	162		C ₂ -benzothiophenes	
35	176		C ₃ -benzothiophenes	
36	190		C ₄ -benzothiophenes	
37	204		C ₅ -benzothiophenes	
28	184	DBT	C _o -dibenzothiophene	
39	198		C ₁ -dibenzothiophenes	
40	212		C ₂ -dibenzothiophenes	
41	226		C ₃ -dibenzothiophenes	
42	240		C ₄ -dibenzothiophenes	
43	234	NBT	C ₀ -naphthobenzothiophene	
	234	ND1	C ₁ -naphthobenzothiophenes	
44			C ₂ -naphthobenzothiophenes	
45	262	2		
46	276		C ₃ -naphthobenzothiophenes	
47	290		C ₄ -naphthobenzothiophenes	
48	253	MAS	Monoaromatic steranes	
49	267		Monoaromatic steranes	
50	239		Monoaromatic steranes	
51 52	231	TAS	Triaromatic steranes Triaromatic steranes	
	245			

Relative Amount 100 -20 40 50 60 70 90 30 80 10 0 AB Ì; Aromatic Hydrocarbon NAPH Aromatic Hydrocarbons Ч A. 1999 A. BP UVB-2-72 (Trace Amounts) PHEN ΡY CHR Distribution BT Sulfur Cmpds DBT NBT MASTAS Steranes

